准备:完全背包理论基础-二维DP数组
1.完全背包就是同一物品可以往里多次装
2.这里先遍历背包 或物品都可以
3.dp[i][j] 表示从下标为[0-i]的物品,每个物品可以取无限次,放进容量为j的背包,价值总和最大是多少


518.零钱兑换II
(1)题目描述:


(2)解题思路:
class Solution {
public:int change(int amount, vector<int>& coins) {vector<int> dp(amount + 1, 0);dp[0] = 1; // 只有一种方式达到0for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包if (dp[j] < INT_MAX - dp[j - coins[i]]) { //防止相加数据超intdp[j] += dp[j - coins[i]];}}}return dp[amount]; // 返回组合数}
};
(3)总结:
1.状态表示:
dp[i][j] 表示:从前 i 个物品中挑选,总体积不超过 j ,所有的选法中,能挑选出来的最⼤价值。(同01背包问题)
2. 状态转移⽅程:
3. 初始化:
我们多加⼀⾏,⽅便我们的初始化,此时仅需将第⼀⾏初始化为 0 即可。因为什么也不选,也能满⾜体积不⼩于 j 的情况,此时的价值为 0 。
4. 填表顺序:
根据状态转移⽅程,我们仅需从上往下填表即可。
377. 组合总和 Ⅳ
(1)题目描述:

(2)解题思路:
class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target + 1, 0);dp[0] = 1;for (int i = 0; i <= target; i++) { // 遍历背包for (int j = 0; j < nums.size(); j++) { // 遍历物品if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {dp[i] += dp[i - nums[j]];}}}return dp[target];}
};
(3)总结:
1.和上一题基本一样,只是在遍历顺序上不同(本题不同的排列顺序也算一种情况)
2.强调顺序时一定是先遍历背包再遍历物品

70. 爬楼梯(进阶版)
(1)题目描述:


(2)解题思路:
#include <iostream>
#include <vector>
using namespace std;
int main() {int n, m;while (cin >> n >> m) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) { // 遍历背包for (int j = 1; j <= m; j++) { // 遍历物品if (i - j >= 0) dp[i] += dp[i - j];}}cout << dp[n] << endl;}
}
(3)总结:
1.确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。
2.确定递推公式
求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j]
3.dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。
下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果
4.确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!
所以需将target放在外循环,将nums放在内循环。
每一步可以走多次,这是完全背包,内循环需要从前向后遍历。
5.举例来推导dp数组