当前位置: 首页 > wzjs >正文

网站建设 手机科学新概念seo外链平台

网站建设 手机,科学新概念seo外链平台,建设网站建设的目标,网站改版合同关键网络架构 深度学习有4种类型的网络架构:密集连接网络、卷积神经网络、循环神经网络和Transformer。每种类型的模型都是针对特定的输入模式,网络架构包含了关于数据结构的假设,即模型搜索的假设空间。某种架构能否解决某个问题&#xff0…

关键网络架构

深度学习有4种类型的网络架构:密集连接网络、卷积神经网络、循环神经网络和Transformer。每种类型的模型都是针对特定的输入模式,网络架构包含了关于数据结构的假设,即模型搜索的假设空间。某种架构能否解决某个问题,完全取决于问题的数据结构与所选的网络架构假设之间是否匹配。

这些不同类型的网络可以很容易组合起来,实现更大的多模式模型,就像拼乐高积木一样。某种程度上来说,深度学习的层就是信息处理领域的乐高积木。下面列出了输入模式与网络架构之间的对应关系。
向量数据:密集连接网络(Dense层)​。
图像数据:二维卷积神经网络。
序列数据:对于时间序列,选择循环神经网络(RNN)​;对于离散序列(比如单词序列)​,选择Transformer。一维卷积神经网络也可用于平移不变的连续序列数据,比如鸟鸣波形。
视频数据:三维卷积神经网络(假设需要捕捉运动效果)​,或者帧级二维卷积神经网络(用于特征提取)再加上序列处理模型。立体数据:三维卷积神经网络。下面来快速回顾一下每种网络架构的特点。

密集连接网络

密集连接网络是Dense层的堆叠,用于处理向量数据(每个样本都是一个数值向量或分类向量)​。这类网络假设输入特征中没有特定结构:之所以叫密集连接,是因为Dense层的每个单元都与其他所有单元相连。该层试图映射任意两个输入特征之间的关系,它与二维卷积层不同,后者仅关注局部关系。

密集连接网络最常用于分类数据(比如输入特征是属性的列表)​,如第波士顿房价数据集。它还用于大多数网络的最终分类或回归,比如卷积神经网络或循环神经网络,最后通常是一两个Dense层。

对于二分类问题,层堆叠的最后一层应该是使用sigmoid激活函数且只有一个单元的Dense层,并使用binary_crossentropy作为损失函数。目标应该是0或1。

from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(num_input_features,))
x = layers.Dense(32, activation="relu")(inputs)
x = layers.Dense(32, activation="relu")(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")

对于单标签、多分类问题(每个样本只对应一个类别)​,层堆叠的最后一层应该是一个Dense层,它使用softmax激活函数,其单元个数等于类别个数。如果目标采用的是one-hot编码,则使用categorical_crossentropy作为损失函数;如果目标是整数,则使用sparse_categorical_crossentropy作为损失函数。

inputs = keras.Input(shape=(num_input_features,))
x = layers.Dense(32, activation="relu")(inputs)
x = layers.Dense(32, activation="relu")(x)
outputs = layers.Dense(num_classes, activation="softmax")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="categorical_crossentropy")

对于连续值向量的回归问题,层堆叠的最后一层应该是不使用激活函数的Dense层,其单元个数等于要预测的值的个数(通常只有一个值,比如房价)​。有几种损失函数可用于回归问题,最常用的是mean_squared_error(均方误差,MSE)​。

inputs = keras.Input(shape=(num_input_features,))
x = layers.Dense(32, activation="relu")(inputs)
x = layers.Dense(32, activation="relu")(x)
outputs layers.Dense(num_values)(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="mse")

卷积神经网络

卷积层能够查看空间局部模式,其方法是对输入张量的不同空间位置(图块)应用相同的几何变换。这样得到的表示具有平移不变性,这使得卷积层能够高效利用数据,并且可以模块化。这个想法适用于任意维度,包括一维(连续序列)​、二维(图像数据)​、三维(立体数据)等。你可以使用Conv1D层来处理序列数据,使用Conv2D层来处理图像数据,使用Conv3D层来处理立体数据。你还可以使用深度可分离卷积层,比如SeparableConv2D层,它比卷积层更精简、更高效。

卷积神经网络是卷积层和最大汇聚层的堆叠。汇聚层可以对数据进行空间下采样,这样做有两个目的:随着特征数量增加,让特征图的尺寸保持在合理范围内;让后续卷积层能够“看到”输入中更大的空间范围。卷积神经网络的最后通常是Flatten运算或全局汇聚层,将空间特征图转换为向量,然后再使用Dense层实现分类或回归。典型的图像分类网络(本例是多分类)如下所示,其中用到了SeparableConv2D层。

inputs = keras.Input(shape=(height, width, channels))
x = layers.SeparableConv2D(32, 3, activation="relu")(inputs)
x = layers.SeparableConv2D(64, 3, activation="relu")(x)
x = layers.MaxPooling2D(2)(x)
x = layers.SeparableConv2D(64, 3, activation="relu")(x)
x = layers.SeparableConv2D(128, 3, activation="relu")(x)
x = layers.MaxPooling2D(2)(x)
x = layers.SeparableConv2D(64, 3, activation="relu")(x)
x = layers.SeparableConv2D(128, 3, activation="relu")(x)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(32, activation="relu")(x)
outputs = layers.Dense(num_classes, activation="softmax")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="categorical_crossentropy")

在构建非常深的卷积神经网络时,通常会添加批量规范化和残差连接。这两种架构模式有助于梯度信息在网络中顺利传播。

循环神经网络

循环神经网络(RNN)的工作原理是,对输入序列每次处理一个时间步,并且始终保存一个状态(这个状态通常是一个向量或一组向量)​。如果序列中的模式不具有时间平移不变性(比如时间序列数据,最近的过去比遥远的过去更重要)​,那么应该优先使用循环神经网络,而不是一维卷积神经网络。

Keras中有3种循环层:SimpleRNN、GRU和LSTM。对于大多数实际用途,你应该使用GRU或LSTM。二者之中,LSTM更强大,计算代价也更大。你可以将GRU看作一种更简单、计算代价更小的替代方法。要将多个RNN层逐个堆叠,最后一层之前的每一层都应该返回完整的输出序列(每个输入时间步都对应一个输出时间步)​。如果只有一个RNN层,则通常只返回最后一个输出,其中包含关于整个序列的信息。
下面是单一的RNN层,用于向量序列的二分类。

inputs = keras.Input(shape=(num_timesteps, num_features))
x = layers.LSTM(32)(inputs)
outputs = layers.Dense(num_classes, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")

下面是RNN层的堆叠,用于向量序列的二分类。

inputs = keras.Input(shape=(num_timesteps, num_features))
x = layers.LSTM(32, return_sequences=True)(inputs)
x = layers.LSTM(32, return_sequences=True)(x)
x = layers.LSTM(32)(x)
outputs = layers.Dense(num_classes, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")

Transformer

Transformer查看一组向量(比如词向量)​,并利用神经注意力将每个向量转化为一个具有上下文感知的表示,这个上下文由这组向量中的其他向量所提供。对于有序序列,你也可以利用位置编码来构建一个同时考虑全局上下文和词序的Transformer。它对长文本段落的处理比循环神经网络或一维卷积神经网络更高效。

Transformer可用于任何集合处理任务或序列处理任务(包括文本分类)​,尤其擅长序列到序列学习,比如将源语言的段落翻译成目标语言。

序列到序列Transformer由以下两部分组成。
TransformerEncoder(Transformer编码器)​:将输入向量序列转化为上下文感知且顺序感知的输出向量序列。

TransformerDecoder(Transformer解码器)​:接收TransformerEncoder的输出和目标序列,并预测目标序列的后续内容。

如果仅处理单一向量序列(或向量集合)​,那么可以只使用TransformerEncoder。

下面是一个序列到序列Transformer,它将源序列映射到目标序列(这种设置可用于机器翻译或问题回答)​。

encoder_inputs = keras.Input(shape=(sequence_length,), dtype="int64")----源序列
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(encoder_inputs)
encoder_outputs = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)
decoder_inputs = keras.Input(shape=(None,), dtype="int64")----当前的目标序列
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(decoder_inputs)
x = TransformerDecoder(embed_dim, dense_dim, num_heads)(x, encoder_outputs)
decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)----向后偏移一个时间步的目标序列
transformer = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)
transformer.compile(optimizer="rmsprop", loss="categorical_crossentropy")

下面是一个仅使用TransformerEncoder对整数序列进行二分类的例子。

inputs = keras.Input(shape=(sequence_length,), dtype="int64")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(inputs)
x = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")
http://www.dtcms.com/wzjs/410902.html

相关文章:

  • 园林景观设计公司组织架构黑帽seo技巧
  • 广州建网站的网络公司化妆品推广软文
  • 做购物网站写数据库的流程怎么提交百度收录
  • 阿里云做网站选什么主机福建百度代理公司
  • 那些网站做汽车可靠性武汉刚刚发生的新闻
  • 全国建设管理信息网站营销渠道的概念
  • 武汉网站建设与服务zoho crm
  • 做网站发广告东莞精准网络营销推广
  • 中国互联网协会理事长级别硬件优化大师下载
  • 中国十大做网站公司微信营销模式
  • 建网站要搜索引擎推广培训
  • 乌海市住房城乡建设厅网站腾讯效果推广
  • 制作网站软件手机长沙网站定制
  • 哪里买域名便宜seo具体怎么优化
  • 推广流程seo推广网站
  • 网站接入商是什么意思网络销售是什么工作内容
  • 找生意做那个网站靠谱会计培训机构排名
  • 北京公司网站建设费用百度关键词广告怎么收费
  • 东莞生活网搜索引擎优化seo应用
  • web的网站开发成都优化网站哪家公司好
  • 网站建设一般需要什么软件开网站流程
  • 各大网站代下单怎么做b2b采购平台
  • 50个单页面网站设计欣赏(2)四年级小新闻50字左右
  • 丹徒网站建设代理商深圳seo优化服务商
  • 做渲染的网站4414站长平台
  • 如何找百度做网站seo优化工具软件
  • 北京公司网站建设费用自己搭建一个网站
  • 做网站要怎么找单软文推广代表平台
  • 平面设计师常用网站seo销售
  • 大连英文网站建设软文平台有哪些