当前位置: 首页 > wzjs >正文

网站建设资讯版块如何做用户运营长沙seo培训班

网站建设资讯版块如何做用户运营,长沙seo培训班,域名可以做网站吗,蓝科企业建站目录 4.7. 前向传播、反向传播和计算图1)前向传播2)前向传播计算图3)反向传播4)训练神经网络5)小结 . 4.7. 前向传播、反向传播和计算图 1)前向传播 前向传播(forward propagation或forward …

目录

    • 4.7. 前向传播、反向传播和计算图
      • 1)前向传播
      • 2)前向传播计算图
      • 3)反向传播
      • 4)训练神经网络
      • 5)小结


.

4.7. 前向传播、反向传播和计算图

1)前向传播

前向传播(forward propagation或forward pass) 指的是:按顺序从输入层到输出层,计算和存储神经网络中每层的结果。

我们将一步步研究单隐藏层神经网络的机制。为了简单起见,我们假设输入样本是 x ∈ R d \mathbf{x} \in \mathbb{R}^d xRd,并且我们的隐藏层不包括偏置项。这里的中间变量是:

z = W ( 1 ) x , (4.7.1) \mathbf{z} = \mathbf{W}^{(1)} \mathbf{x}, \tag{4.7.1} z=W(1)x,(4.7.1)

其中 W ( 1 ) ∈ R h × d \mathbf{W}^{(1)} \in \mathbb{R}^{h \times d} W(1)Rh×d 是隐藏层的权重参数。将中间变量 z ∈ R h \mathbf{z} \in \mathbb{R}^h zRh 通过激活函数 ϕ \phi ϕ 后,我们得到长度为 h h h 的隐藏激活向量:

h = ϕ ( z ) . (4.7.2) \mathbf{h} = \phi(\mathbf{z}). \tag{4.7.2} h=ϕ(z).(4.7.2)

隐藏变量 h \mathbf{h} h 也是一个中间变量。假设输出层的参数只有权重 W ( 2 ) ∈ R q × h \mathbf{W}^{(2)} \in \mathbb{R}^{q \times h} W(2)Rq×h,我们可以得到输出层变量,它是一个长度为 q q q 的向量:

o = W ( 2 ) h . (4.7.3) \mathbf{o} = \mathbf{W}^{(2)} \mathbf{h}. \tag{4.7.3} o=W(2)h.(4.7.3)

假设损失函数为 l l l,样本标签为 y y y,我们可以计算单个数据样本的损失项:

L = l ( o , y ) . (4.7.4) L = l(\mathbf{o}, y). \tag{4.7.4} L=l(o,y).(4.7.4)

根据 L 2 L_2 L2 正则化的定义,给定超参数 λ \lambda λ,正则化项为

s = λ 2 ( ∥ W ( 1 ) ∥ F 2 + ∥ W ( 2 ) ∥ F 2 ) , (4.7.5) s = \frac{\lambda}{2} \left( \|\mathbf{W}^{(1)}\|_F^2 + \|\mathbf{W}^{(2)}\|_F^2 \right), \tag{4.7.5} s=2λ(W(1)F2+W(2)F2),(4.7.5)

其中矩阵的 Frobenius 范数是将矩阵展平为向量后应用的 L 2 L_2 L2 范数。最后,模型在给定数据样本上的正则化损失为:

J = L + s . (4.7.6) J = L + s. \tag{4.7.6} J=L+s.(4.7.6)

在下面的讨论中,我们将 J J J 称为目标函数(objective function)。

.

2)前向传播计算图

绘制计算图有助于我们可视化计算中操作符和变量的依赖关系。

下图,是与上述简单网络相对应的计算图, 其中正方形表示变量,圆圈表示操作符。 左下角表示输入,右上角表示输出。 注意显示数据流的箭头方向主要是向右和向上的。

图4.7.1 前向传播的计算图
在这里插入图片描述

.

3)反向传播

反向传播(backward propagation 或 backpropagation)指的是计算神经网络参数梯度的方法。简言之,该方法根据微积分中的链式规则,按相反的顺序从输出层到输入层遍历网络。

该算法存储了计算某些参数梯度时所需的任何中间变量(偏导数)。假设我们有函数 Y = f(X) 和 Z = g(Y),其中输入和输出 X, Y, Z 是任意形状的张量。利用链式法则,我们可以计算关于 X X X 的导数:

∂ Z ∂ X = prod ( ∂ Z ∂ Y , ∂ Y ∂ X ) \frac{\partial Z}{\partial X} = \text{prod} \left( \frac{\partial Z}{\partial Y}, \frac{\partial Y}{\partial X} \right) XZ=prod(YZ,XY)

在这里,我们使用 prod 运算符在执行必要的操作(如换位和交换输入位置)后将其参数相乘。对于向量,这很简单,它只是矩阵-矩阵乘法。对于高维张量,我们使用适当的对应项。运算符 prod 指代了所有的这些符号。

在前面计算图中的单隐藏层简单网络的参数是 W ( 1 ) W^{(1)} W(1) W ( 2 ) W^{(2)} W(2)。反向传播的目的是计算梯度 ∂ J / ∂ W ( 1 ) \partial J/\partial W^{(1)} J/W(1) ∂ J / ∂ W ( 2 ) \partial J/\partial W^{(2)} J/W(2)。为此,我们应用链式法则,依次计算每个中间变量和参数的梯度。计算的顺序与前向传播中执行的顺序相反,因为我们需要从计算图的结果开始,并朝着参数的方向工作。第一步是计算目标函数 J = L + s J = L + s J=L+s 相对于损失项 L L L 和正则项 s s s 的梯度:

∂ J ∂ L = 1 and ∂ J ∂ s = 1 \frac{\partial J}{\partial L} = 1 \quad \text{and} \quad \frac{\partial J}{\partial s} = 1 LJ=1andsJ=1

接下来,我们根据链式法则计算目标函数关于输出层变量的梯度:

∂ J ∂ o = prod ( ∂ J ∂ L , ∂ L ∂ o ) = ∂ L ∂ o ∈ R q \frac{\partial J}{\partial \mathbf{o}} = \text{prod} \left( \frac{\partial J}{\partial L}, \frac{\partial L}{\partial \mathbf{o}} \right) = \frac{\partial L}{\partial \mathbf{o}} \in \mathbb{R}^q oJ=prod(LJ,oL)=oLRq

接着,计算正则化项相对于两个参数的梯度:

∂ s ∂ W ( 1 ) = λ W ( 1 ) and ∂ s ∂ W ( 2 ) = λ W ( 2 ) \frac{\partial s}{\partial \mathbf{W}^{(1)}} = \lambda \mathbf{W}^{(1)} \; \text{and} \; \frac{\partial s}{\partial \mathbf{W}^{(2)}} = \lambda \mathbf{W}^{(2)} W(1)s=λW(1)andW(2)s=λW(2)

现在我们可以计算最接近输出层的模型参数的梯度 ∂ J / ∂ W ( 2 ) ∈ R q × h \partial J / \partial W^{(2)} \in \mathbb{R}^{q \times h} J/W(2)Rq×h。使用链式法则得出:

∂ J ∂ W ( 2 ) = prod ( ∂ J ∂ o , ∂ o ∂ W ( 2 ) ) + prod ( ∂ J ∂ s , ∂ s ∂ W ( 2 ) ) = ∂ J ∂ o h ⊤ + λ W ( 2 ) \frac{\partial J}{\partial \mathbf{W}^{(2)}}= \text{prod}\left(\frac{\partial J}{\partial \mathbf{o}}, \frac{\partial \mathbf{o}}{\partial \mathbf{W}^{(2)}}\right) + \text{prod}\left(\frac{\partial J}{\partial s}, \frac{\partial s}{\partial \mathbf{W}^{(2)}}\right)= \frac{\partial J}{\partial \mathbf{o}} \mathbf{h}^\top + \lambda \mathbf{W}^{(2)} W(2)J=prod(oJ,W(2)o)+prod(sJ,W(2)s)=oJh+λW(2)

为了获得关于 W ( 1 ) W^{(1)} W(1) 的梯度,需要继续沿输出层到隐藏层反向传播。关于隐藏层输出的梯度 ∂ J / ∂ h ∈ R h \partial J / \partial \mathbf{h} \in \mathbb{R}^{h} J/hRh 由下式给出:

∂ J ∂ h = prod ( ∂ J ∂ o , ∂ o ∂ h ) = W ( 2 ) ⊤ ∂ J ∂ o \frac{\partial J}{\partial \mathbf{h}} = \text{prod}\left(\frac{\partial J}{\partial \mathbf{o}}, \frac{\partial \mathbf{o}}{\partial \mathbf{h}}\right) = {\mathbf{W}^{(2)}}^\top \frac{\partial J}{\partial \mathbf{o}} hJ=prod(oJ,ho)=W(2)oJ

由于激活函数 ϕ \phi ϕ 是按元素计算的,计算中间变量的梯度 ∂ J / ∂ z ∈ R h \partial J / \partial \mathbf{z} \in \mathbb{R}^{h} J/zRh 需要使用按元素乘法运算符(用 ⊙ \odot 表示):

∂ J ∂ z = prod ( ∂ J ∂ h , ∂ h ∂ z ) = ∂ J ∂ h ⊙ ϕ ′ ( z ) \frac{\partial J}{\partial \mathbf{z}} = \text{prod}\left(\frac{\partial J}{\partial \mathbf{h}}, \frac{\partial \mathbf{h}}{\partial \mathbf{z}}\right) = \frac{\partial J}{\partial \mathbf{h}} \odot \phi'\left(\mathbf{z}\right) zJ=prod(hJ,zh)=hJϕ(z)

最后,我们可以得到最接近输入层的模型参数的梯度 ∂ J / ∂ W ( 1 ) ∈ R h × d \partial J / \partial W^{(1)} \in \mathbb{R}^{h \times d} J/W(1)Rh×d。根据链式法则:

∂ J ∂ W ( 1 ) = prod ( ∂ J ∂ z , ∂ z ∂ W ( 1 ) ) + prod ( ∂ J ∂ s , ∂ s ∂ W ( 1 ) ) = ∂ J ∂ z x ⊤ + λ W ( 1 ) \frac{\partial J}{\partial \mathbf{W}^{(1)}} = \text{prod}\left(\frac{\partial J}{\partial \mathbf{z}}, \frac{\partial \mathbf{z}}{\partial \mathbf{W}^{(1)}}\right) + \text{prod}\left(\frac{\partial J}{\partial s}, \frac{\partial s}{\partial \mathbf{W}^{(1)}}\right) = \frac{\partial J}{\partial \mathbf{z}} \mathbf{x}^\top + \lambda \mathbf{W}^{(1)} W(1)J=prod(zJ,W(1)z)+prod(sJ,W(1)s)=zJx+λW(1)

.

4)训练神经网络

在训练神经网络时,前向传播和反向传播相互依赖。 对于前向传播,我们沿着依赖的方向遍历计算图并计算其路径上的所有变量。 然后将这些用于反向传播,其中计算顺序与计算图的相反。

以上述简单网络为例:

  • 一方面,在前向传播期间计算正则项取决于模型参数和的当前值。 它们是由优化算法根据最近迭代的反向传播给出的。

  • 另一方面,反向传播期间参数的梯度计算, 取决于由前向传播给出的隐藏变量的当前值。

因此,在训练神经网络时,在初始化模型参数后, 我们交替使用前向传播和反向传播,利用反向传播给出的梯度来更新模型参数。

注意,反向传播重复利用前向传播中存储的中间值,以避免重复计算。带来的影响之一是我们需要保留中间值,直到反向传播完成。 这也是训练比单纯的预测需要更多的内存(显存)的原因之一。 此外,这些中间值的大小与网络层的数量和批量的大小大致成正比。 因此,使用更大的批量来训练更深层次的网络更容易导致内存不足(out of memory)错误。

.

5)小结

  • 前向传播在神经网络定义的计算图中按顺序计算和存储中间变量,它的顺序是从输入层到输出层。

  • 反向传播按相反的顺序(从输出层到输入层)计算和存储神经网络的中间变量和参数的梯度。

  • 在训练深度学习模型时,前向传播和反向传播是相互依赖的。

  • 训练比预测需要更多的内存。

.


声明:资源可能存在第三方来源,若有侵权请联系删除!

http://www.dtcms.com/wzjs/406907.html

相关文章:

  • wordpress页面中英文小图标怎么做seo推广平台服务
  • 网页制作与网站建设...爱站工具包官网下载
  • 做了个网站 怎么做seoseo营销课程培训
  • 苹果cms建站教程重庆seo技术博客
  • 18款禁用免费观看app下载荥阳seo推广
  • 做网站多少钱 佛山seo搜索引擎优化工具
  • 浏网站建设补贴江苏seo排名
  • dw网站二级页面怎么做长沙seo搜索
  • 房产网站设计危机公关
  • 有哪些做品牌特卖的网站新区seo整站优化公司
  • 网站备案要什么电商seo是什么
  • 品牌高端网站制作企业百度seo排名优化
  • 杭州如何设计网站首页网络推广和seo
  • 大连网站优化多少钱信息流优化
  • 做网站的专业公司每日舆情信息报送
  • 浙江公铁建设工程有限公司网站网络营销推广网站
  • 莞城做网站新闻投稿
  • 电商 网站模板鄞州seo整站优化服务
  • 网络科技公司网站源码官网seo
  • 购物商城外贸网站建设批量优化网站软件
  • 平邑县建设局网站沈阳seo团队
  • 红色 网站配色十大app开发公司排名
  • 个人做房产网站广告公司简介
  • 网站创建的一般步骤湖北网络推广
  • 个人网站怎么做有创意网站怎么做优化排名
  • 做网站的参考文献有哪些最近营销热点
  • 软件测试报告宁波seo推广推荐公司
  • 企业网站系统设计引擎搜索对人类记忆的影响
  • 做网站平台磁力下载
  • 如何建立网站平台网络优化需要哪些知识