当前位置: 首页 > wzjs >正文

做响应式网站的体会百度推广是什么工作

做响应式网站的体会,百度推广是什么工作,网站定位策划,学做网站 空间 域名1 行列式使用如下性质定义 1)单位矩阵行列式值为 1, ,对于任意单位矩阵均成立; 2)当矩阵交换一行后,行列式值改变符号,如置换矩阵的行列式值为 (根据行交换次数决定)&…

1 行列式使用如下性质定义

1)单位矩阵行列式值为 1,

,对于任意单位矩阵均成立;

2)当矩阵交换一行后,行列式值改变符号,如置换矩阵的行列式值为 

(根据行交换次数决定);

3)矩阵任意行线性变换导致行列式值产生线性变换:

      

 ;

     使用以上三条基本性质,可以推导更多性质:

4)如果矩阵两行相等,行列式值为 0;

     利用性质2,交换两相等行,行列式值改变符号,故行列式值必须为 0;

5)对矩阵任意两行做如下运算:行2 = 行2 - k * 行1,新矩阵行列式值不发生改变,

     利用性质3,

 ;通过该性质,可以知道矩阵消元法仅改变矩阵行列式值的符号,

6)如果矩阵中存在一行全为 0, 矩阵行列式值为 0;

      利用性质5,将全零行改写为任意非零行与全零行的和,得到两个全零行,故原矩阵行列式值为 0;

7)上三角矩阵或者下三角矩阵行列式值为对角元素之积,

     a. 利用性质5,使用消元法可以对非零元素进行消元处理,最终形成对角矩阵,其对角元素保持不变,即 det U = det D;

     b. 利用性质3,

 ;

     c. 利用性质1,由于 

,则上三角矩阵行列式值为为对角元素之积;

8)如果矩阵为奇异矩阵,行列式值为 0;如果矩阵为非奇异矩阵,行列式值不为 0;

      当矩阵为奇异矩阵时,使用消元法至少一行全零行,性质5 表明 

, 根据性质6,det U = 0;

      当矩阵为非奇异矩阵时,使用消元法得到满秩,性质5 表明 

,根据性质7得 

9)矩阵乘积的行列式等于矩阵行列式的乘积,

;使用该性质,有 

      a. 构造 

      b. 当 A 为单位矩阵时,

,满足性质1;

      c. 当交换矩阵 A 中任意两行,矩阵 AB 中对应两行也发送交换,d(A) 符号发生改变,满足性质2;

      d. 矩阵 A 中任意行线性变换,矩阵 AB 中对应行发生同样线性变换,d(A) 值发生同样线性变换,满足性质3;

      e. 综上,d(A) 满足性质1,2,3,故 

10)矩阵转置后行列式不发生改变,

      a. 假定在不需行变换下可对矩阵进行 LU 分解,

      b. 利用性质9,

      c. 由于矩阵 L 为三角矩阵,且对角元素均为1,

      d. 由于矩阵 U 为三角矩阵,

,因此,

      e. 在矩阵 LU 分解时引入行变换,

, 由于 

,故可忽略行变换影响;

2 行列式计算公式

   1)以3*3矩阵为例,使用行列式线性特性,将矩阵第一行进行分解:

      

  2)对分解后的三项对矩阵第二行再次分解:

     

     

     

  3)对分解后的九项第三行再次分解:

     

     ...... 

  4)通过以上分解,3*3 矩阵的行列式被分解为 

 个行列式的线性组合。在 27 个行列式中,有很大一部分值为 0,仅当各行元素不再同一列时,行列式值不为0。

       通过交换矩阵行,所有矩阵可变为对角矩阵,故行列式值公式可表示为:

      

     其中,

 为 

 的全排列,

 取决于在该排列下将矩阵变为对角矩阵的行变换次数的奇偶性,

     当行变换次数为奇数时,

;当行变换次数为偶数时,

 。

3 代数余子式

   使用代数余子式,可以将 N 维行列式改写为 N - 1 维行列式得线性组合,降低计算量。方法如下:

   1)以 3*3 矩阵为例,其行列式值为

        

  2)提取公因子 

, 

       括号内部为余下 2*2 矩阵得行列式值(但符号可能相反);

  3)将括号内记为对应元素得代数余子式,上式改写为 

  4)由于 

,因此也可以在列方向上分解行列式 

 。

4 行列式应用

  1)计算 

   使用 Gaussian-Jordan Method 可以通过消元法计算矩阵得逆,使用代数余子式概念可计算矩阵的逆,但效率会低于 Gaussian-Jordan Method。

   以 3*3 矩阵为例,解释如下:

   a. 矩阵 A 与代数余子式构成的矩阵 C 的转置相乘得:

      

   b. 上式中,如 

 等项表示原矩阵 A 使用第一行替代第二行构成的新矩阵 B 的行列式,由于 B 的第一行与第二行相等,故行列式值为 0;

       因此,只有当 a 与 C 的下标相同时,项 

 的值等于 A  的行列式值,故上式可化简为:

       

   c. 进一步整理得 

,因此,

   2)求解 Ax=b

   a. 

,带入 

得 

   b. 向量 x 的各分量值 

,其分子部分为一个新矩阵 

 的行列式值,

      因此,向量 x 的各分量值为 

,这就是 Cramer's Rule 。

   3)多面体的体积

   在 N 维空间中,行列式值表示多面体体积。如在二维平面中,给定两条边构成的平行四边形面积等于以边为行构成的矩阵的行列式值(绝对值);

   在三维空间中,给定三条边构成六面体的体积为对应矩阵的行列式值(绝对值)。证明如下:

   a. 当各条边相互垂直时,

       

, 

      

   b. 当各条边不垂直时,如下图所示,

       由于 

,根据 a 结论,

,因此,

,结论得证。

       

http://www.dtcms.com/wzjs/404572.html

相关文章:

  • 网站开发电脑内存要多少钱seo站
  • 英文网站域名注册域名归属查询
  • 做网站赚钱的案例北京seo多少钱
  • 科协科普网站建设网络推广公司可不可靠
  • 电话手表网站网上的推广公司
  • 中国建设银行手机银行家网站如何做网站优化
  • 建行网上银行登录入口官网搜索引擎优化seo论文
  • 做国外服务器网站今日头条网页版入口
  • 自己做的网站怎样弄网上怎么制作网页设计
  • 网站开发工作流程今日新闻
  • 购物网站推广怎么做优化落实防控措施
  • 山东省建设执业资格注册管理中心网站站长工具域名
  • 免费网站空间 推荐佣金高的推广平台
  • 苏州公司网站设计网站模板平台资源
  • 了解网站开发的背景百度账号申请注册
  • 大连疫情最新通报抖音搜索seo代理
  • 资讯类网站建设资质要求厦门seo代运营
  • 河北企业自助建站最新国际足球世界排名
  • 推荐做那个的电影网站淘宝指数入口
  • 国外室内设计网站推荐网站推广排名服务
  • 深圳网站开发公推广下载app拿佣金
  • 香港MB网站电商网络推广是什么
  • 公司网站建设多少钱怎么推广销售
  • 清远市住房与城乡建设局的网站查网站开发的公司
  • 哪个网站做恒生指数最安全上海百度推广公司排名
  • 厦门专业网站营销联盟营销平台
  • 济南公司建站模板网络营销推广平台有哪些
  • 看男女做那个视频网站seo效果检测步骤
  • 中国住房和城乡建设网官网青岛seo服务
  • 深圳建网站的专业公司孔宇seo