当前位置: 首页 > wzjs >正文

2345网址大全导航seo关键词快速提升软件官网

2345网址大全导航,seo关键词快速提升软件官网,基于android的移动互联网开发,网站开发常用标签♥♥♥~~~~~~欢迎光临知星小度博客空间~~~~~~♥♥♥ ♥♥♥零星地变得优秀~也能拼凑出星河~♥♥♥ ♥♥♥我们一起努力成为更好的自己~♥♥♥ ♥♥♥如果这一篇博客对你有帮助~别忘了点赞分享哦~♥♥♥ ♥♥♥如果有什么问题可以评论区留言或者私信我哦~♥♥♥ ✨✨✨✨✨✨ 个…


♥♥♥~~~~~~欢迎光临知星小度博客空间~~~~~~♥♥♥

♥♥♥零星地变得优秀~也能拼凑出星河~♥♥♥

♥♥♥我们一起努力成为更好的自己~♥♥♥

♥♥♥如果这一篇博客对你有帮助~别忘了点赞分享哦~♥♥♥

♥♥♥如果有什么问题可以评论区留言或者私信我哦~♥♥♥

✨✨✨✨✨✨ 个人主页✨✨✨✨✨✨

        前面一篇博客我们已经知道了实现动态规划的一般步骤,接下来这篇博客我们将继续在题目中使用巧妙的动态规划思想~准备好了吗~我们发车去探索奥秘啦~🚗🚗🚗🚗🚗🚗

目录

不同路径

不同路径Ⅱ

珠宝的最高价值


不同路径

不同路径

这个题目需要讨论的是由左上角到右下角的路径总数~我们可以按照动态规划的步骤来进行一步步分析~

1、状态表示

        结合这里的题目要求+经验:我们这里的状态表示dp[i][j]到达该位置的路径总数

2、状态转移方程

       我们以离【i】【j】位置最近的状态分析状态转移方程

1、到达该位置,可能是从第【i-1】【j】位置向下一步到达的

2、到达该位置,可能是从第【i】【j-1】位置向右一步到达的

       所以到达该位置路径数也就是dp[i-1][j]+dp[i][j-1],状态转移方程也就是:

                dp[i][j]=dp[i-1][j]+dp[i][j-1]

3、初始化

        我们可以看到,状态转移方程里面有i-1,j-1当i=0或者j=0的时候显然会出现越界的情况,所以我们需要进行初始化

        结合前面如果不想初始化太麻烦,我们可以多申请一些空间,这里与前面不一样的是这里是二维空间,我们前面是一维空间,那么我们这里也就可以多申请一行一列~那么怎么初始化这一行一列呢?

        事实上,增加的这一行一列影响的是原来的第一行第一列,我们就来看看原来的第一行第一列应该是什么值?

        因为只能向下或者向右走一步,所以第一行第一列都是1,都只有一种路径,那么应该怎么初始化才能让第一行第一列为1呢?有两种方法:

        1、dp[1][0]=1,其他初始化为0

        2、dp[0][1]=1 ,其他初始化为0

        这两种初始化方式本质上都是让dp[1][1]等于1,有人可能会说那为什么不直接初始化dp[1][1]=1就好了,这是不可以的,因为后面循环会再对dp[1][1]赋值为dp[0][1]+dp[1][0],那么dp[1][1]就等于0,显然结果就不正确了

        这种初始化方式还需要注意的是下标的映射关系,这里不是十分明显,我们在后面的题目会分析~

4、填表顺序

        我们这里的逻辑是从前面依次推出后面的,所以填表顺序是从前向后

5、返回结果

       右下角位置的值就是到达右下角路径总数,直接返回dp[m][n]就是我们的结果

代码实现:

class Solution 
{
public:int uniquePaths(int m, int n) {//1、创建dp表vector<vector<int>> dp(m+1,vector<int>(n+1));//2、初始化//dp[1][0]=1;//adp[0][1]=1;//b//3、填表for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){dp[i][j]=dp[i-1][j]+dp[i][j-1];}}//4、返回结果return dp[m][n];}
};

顺利通过~

不同路径Ⅱ

不同路径Ⅱ

这个题目与上一个题目有区别的是多了障碍物,那么我们很容易想到的就是当前位置有障碍物那么肯定到不了当前位置,那么路径数就是0,否则就与我们前面的分析是一样的~

分析:

1、状态表示

        结合这里的题目要求+经验:我们这里的状态表示dp[i][j]到达该位置的路径总数

2、状态转移方程

       如果当前位置有障碍物,那么路径数就是0,否则我们就以离【i】【j】位置最近的状态分析状态转移方程

1、到达该位置,可能是从第【i-1】【j】位置向下一步到达的

2、到达该位置,可能是从第【i】【j-1】位置向右一步到达的

       所以到达该位置路径数也就是dp[i-1][j]+dp[i][j-1],状态转移方程也就是:

                dp[i][j]=dp[i-1][j]+dp[i][j-1]

3、初始化

        我们可以看到,状态转移方程里面有i-1,j-1当i=0或者j=0的时候显然会出现越界的情况,所以我们需要进行初始化

        结合前面如果不想初始化太麻烦,我们这里也就可以多申请一行一列~那么怎么初始化这一行一列呢?结合前面一个题目的分析,依然是有两种方法:

        1、dp[1][0]=1,其他初始化为0

        2、dp[0][1]=1 ,其他初始化为0

        这两种初始化方式本质上都是让dp[1][1]等于1~

        这种初始化方式还需要注意的是下标的映射关系,在这个题目中就比较明显了,因为参数是数组,dp的【i】【j】位置是传过来数组的【i-1】【j-1】位置~

4、填表顺序

        我们这里的逻辑是从前面依次推出后面的,所以填表顺序是从前向后

5、返回结果

       右下角位置的值就是到达右下角路径总数,直接返回dp[m][n]就是我们的结果

        这个题目与第一个题目没有太大的区别,代码也是十分类似的,我们来实现一下~

代码实现:

class Solution 
{
public:int uniquePathsWithObstacles(vector<vector<int>>& ob)     {//1、创建dp表int m=ob.size();int n=ob[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1));//2、初始化dp[1][0]=1;//a//dp[0][1]=1;//b//3、填表//注意下标映射关系for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(ob[i-1][j-1]==0)//如果没有障碍物dp[i][j]=dp[i-1][j]+dp[i][j-1];//有障碍物已经被初始化为0}}//4、返回结果return dp[m][n];}
};

顺利通过~

珠宝的最高价值

珠宝的最高价值

同样利用动态规划的思想来进行一步步分析:

1、状态表示

        结合这里的题目要求+经验:我们这里的状态表示dp[i][j]到达该位置拿到的最大珠宝价值

2、状态转移方程

      以离【i】【j】位置最近的状态分析状态转移方程

1、到达该位置,可能是从第【i-1】【j】位置向下一步到达的

2、到达该位置,可能是从第【i】【j-1】位置向右一步到达的

        但是我们需要的是最大的价值,所以应该是两者之间的最大值加上当前位置的珠宝价值,就是当前位置的最大珠宝价值

       状态转移方程也就是:(这里需要注意下标映射关系)

                dp[i][j]=max(dp[i-1][j]+dp[i][j-1])+frame[i-1][j-1]

3、初始化

        我们可以看到,状态转移方程里面有i-1,j-1当i=0或者j=0的时候显然会出现越界的情况,所以我们需要进行初始化

        结合前面如果不想初始化太麻烦以及处理边界情况,我们这里也就可以多申请一行一列~那么怎么初始化这一行一列呢?与前面不同的是,这里直接全部初始化为0就好了,因为 dp[i][j]=max(dp[i-1][j]+dp[i][j-1])+frame[i-1][j-1]

        dp[1][1]会在循环里面等于frame[0][0]~

        这种初始化方式还需要注意的是下标的映射关系,在这个题目中就比较明显了,因为参数是数组,dp的【i】【j】位置是传过来数组的【i-1】【j-1】位置~

4、填表顺序

        我们这里的逻辑是从前面依次推出后面的,所以填表顺序是从前向后

5、返回结果

      直接返回dp[m][n]就是我们的结果

有了前面两个题目的基础,这个题目就比较简单,我们来看看代码实现:

class Solution 
{
public:int jewelleryValue(vector<vector<int>>& frame) {//1、创建dp表int m=frame.size();int n=frame[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1));//2、初始化//循环里面会进行初始化//3、填表for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];//注意下标映射关系}}//4、返回结果return dp[m][n];}
};

顺利通过~


♥♥♥本篇博客内容结束,期待与各位优秀程序员交流,有什么问题请私信♥♥♥

♥♥♥如果这一篇博客对你有帮助~别忘了点赞分享哦~♥♥♥

✨✨✨✨✨✨个人主页✨✨✨✨✨✨


http://www.dtcms.com/wzjs/399280.html

相关文章:

  • wordpress默认用某一号字体长春网站优化咨询
  • 连云港做网站优化自动seo网站源码
  • 昆明做网站建设的公司排名种子搜索在线 引擎
  • 论坛搭建 wordpress短视频seo厂家
  • 音乐外链网站平台代运营是什么意思
  • 网站制作都包括什么汕头网络营销公司
  • 南昌网站设计企业高端营销型网站
  • 刚做的网站搜索不到百度数据平台
  • 内蒙古网站制作seo云优化软件破解版
  • 自建英文网站seminar什么意思中文
  • 山西建设局网站首页如何软件网站优化公司
  • 娱乐网站怎么制作韩国日本比分
  • 文化事业建设费在哪个网站申报谷歌seo优化技巧
  • 扬州市邗江区疫情seo每日一帖
  • 杭州做网站设计公司最新时事热点
  • 官方网站的要素seo机构
  • 做书评的网站有哪些网站推广怎么优化
  • 做网站的职位怎样制作免费网页
  • 旅游网站建设规划报告怎么写超级外链工具源码
  • 谷歌seo代运营唐山seo排名
  • 营销型网站建设制作超级推荐的关键词怎么优化
  • 做网站推广的seo百度贴吧
  • 找段子的各大网站seo站长论坛
  • 互联网网站建设方案北京seo排名服务
  • 网站内容专题怎么做视频号关键词搜索排名
  • 装饰派单哪个网站靠谱seowhy培训
  • 2023年新闻摘抄seo短视频网页入口引流网站
  • 桂林网站开发杭州排名优化公司
  • .net网站程序百度推广图片
  • 网站如何做才可以微信直接登录淘宝友情链接怎么设置