当前位置: 首页 > wzjs >正文

网站备案需要什么资料品牌营销公司

网站备案需要什么资料,品牌营销公司,山西网站建设多少钱,wordpress比较Langchain功能 LangChian 作为一个大语言模型(LLM, Large Language Model)开发框架,是 LLM 应用架构的重要一环。借助 LangChain,我们可以创建各种应用程序,包括聊天机器人和智能问答工具。 AI模型:包含各…

Langchain功能

LangChian 作为一个大语言模型(LLM, Large Language Model)开发框架,是 LLM 应用架构的重要一环。借助 LangChain,我们可以创建各种应用程序,包括聊天机器人和智能问答工具。

image-20250306092604294

AI模型:包含各大语言模型的LangChain接口和调用细节,以及输出解析机制。

提示模板(Prompts): 提示模板,激发大语言模型的潜力。

检索(Retrieval): 自建知识库,实现检索增强生成(Retrieval Augmented Generation ,RAG),包含文档加载、文本拆分、转换成向量、向量存储、知识检索。

向量数据库: 保存语料信息。

组件

架构 | 🦜️🔗 LangChain 框架

image-20250307173645572

快速上手

安装依赖

pip install langchain
pip install -qU langchain-openai
pip install "langserve[all]"
pip install -U langchain-community
python
Python 3.10.0 | packaged by conda-forge | (default, Nov 10 2021, 13:20:59) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
pip list
Package                  Version
------------------------ -----------
aiohappyeyeballs         2.5.0
aiohttp                  3.11.13
aiosignal                1.3.2
annotated-types          0.7.0
anyio                    4.8.0
async-timeout            4.0.3
attrs                    25.1.0
build                    1.2.2.post1
certifi                  2025.1.31
charset-normalizer       3.4.1
cmake                    3.31.6
colorama                 0.4.6
dataclasses-json         0.6.7
diskcache                5.6.3
dpcpp-cpp-rt             2024.0.2
exceptiongroup           1.2.2
frozenlist               1.5.0
greenlet                 3.1.1
h11                      0.14.0
httpcore                 1.0.7
httpx                    0.28.1
httpx-sse                0.4.0
idna                     3.10
importlib_metadata       8.6.1
intel-cmplr-lib-rt       2024.0.2
intel-cmplr-lic-rt       2024.0.2
intel-opencl-rt          2024.0.2
intel-openmp             2024.0.2
jsonpatch                1.33
jsonpointer              3.0.0
langchain                0.3.20
langchain-community      0.3.19
langchain-core           0.3.41
langchain-text-splitters 0.3.6
langsmith                0.3.12
llama_cpp_python         0.2.23
marshmallow              3.26.1
mkl                      2024.0.0
mkl-dpcpp                2024.0.0
multidict                6.1.0
mypy-extensions          1.0.0
numpy                    2.2.3
onednn                   2024.0.0
onemkl-sycl-blas         2024.0.0
onemkl-sycl-datafitting  2024.0.0
onemkl-sycl-dft          2024.0.0
onemkl-sycl-lapack       2024.0.0
onemkl-sycl-rng          2024.0.0
onemkl-sycl-sparse       2024.0.0
onemkl-sycl-stats        2024.0.0
onemkl-sycl-vm           2024.0.0
orjson                   3.10.15
packaging                24.2
pip                      25.0
propcache                0.3.0
pydantic                 2.10.6
pydantic_core            2.27.2
pydantic-settings        2.8.1
pyproject_hooks          1.2.0
python-dotenv            1.0.1
PyYAML                   6.0.2
requests                 2.32.3
requests-toolbelt        1.0.0
setuptools               75.8.2
sniffio                  1.3.1
SQLAlchemy               2.0.38
tbb                      2021.13.1
tenacity                 9.0.0
tomli                    2.2.1
typing_extensions        4.12.2
typing-inspect           0.9.0
urllib3                  2.3.0
wheel                    0.45.1
yarl                     1.18.3
zipp                     3.21.0
zstandard                0.23.0

推理问题示例

完成代码:

from langchain_community.llms import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler# 1. 定义中文提示模板
template_zh = """[INST] <<SYS>>
你是一个智能 助手,需用简洁且口语化的回答用户问题。若问题不明确,请主动询问细节。
<</SYS>>{question} [/INST]"""prompt = PromptTemplate(template=template_zh, input_variables=["question"])
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
# 2. 加载本地模型
# 配置参数
n_gpu_layers = 40  # 根据您的模型和GPU VRAM大小调整
n_batch = 512  # 应在1到n_ctx之间,考虑GPU的VRAM大小llm = LlamaCpp(model_path="llama-2-7b-chat.Q4_K_M.gguf",n_gpu_layers=n_gpu_layers,n_batch=n_batch,callback_manager=callback_manager,verbose=True,
)# 3. 构建链
chain = prompt | llm | StrOutputParser()# 4. 调用示例
question = "如何用Python实现快速排序?"
response = chain.invoke({"question": question})
print(f"\n回答:{response}")

输出结果

回答:  Hey there! 😊
To implement quicksort in Python, you can use the following code:
```python
def quicksort(arr):if len(arr) <= 1:return arrelse:pivot = arr[0]less = [x for x in arr[1:] if x < pivot]greater = [x for x in arr[1:] if x >= pivot]return quicksort(less), pivot, quicksort(greater)
```
This is a basic implementation of the quicksort algorithm. The function takes an array as input and returns three values: the sorted list (or lists), the pivot element, and the results of recursively calling the quicksort function on the greater and less than elements.
Please let me know if you have any questions! 😃
(langchain) PS D:\code\trae> 

ref

一文详解最热的 LLM 应用框架 LangChain - 知乎

http://www.dtcms.com/wzjs/396428.html

相关文章:

  • 网站建设推广唯心cidun8百度竞价推广点击软件
  • 网站开发需要多线程小程序推广平台
  • asp网站建设郑州seo线上推广技术
  • 手机网站建设的背景seo对网店推广的作用有哪些
  • 常州微信网站制作网络加速器
  • 设计logo网站侵权吗知乎百度收录推广
  • 网站首页banner动态化今日头条搜索优化怎么做
  • 传媒公司商业计划书优化大师免费版下载
  • 最强国产系统发布阳东网站seo
  • 巴彦淖尔网站建设公司公司网络营销策划书
  • 龙口做网站软文广告平台
  • 城乡与住房建设部网站天津seo诊断技术
  • 聚美优品的网站建设优化设计三年级下册数学答案
  • 用flash做的网站欣赏windows优化大师收费吗
  • 网站建设实录超级推荐的关键词怎么优化
  • 开发公司总工程师职责外贸seo是啥
  • 广州教育网站建设seopeixun
  • 织梦dede做网站的优点百度地图人工客服电话
  • 建设银行网站查询密码torrentkitty磁力官网
  • 网站开发定制模板网站建设情感网站seo
  • 成都网络营销公司哪个好360网站seo手机优化软件
  • 谁可以帮我做网站电商运营公司
  • 淘宝seo关键词的获取方法有哪些网站seo优化课程
  • 招聘门户网站是什么意思网页模板网站
  • 建个公司网站多少钱优化推广网站推荐
  • 简单的电子商务网站主页设计图朝阳区seo技术
  • 什么是理财北京网站建设公司好一级造价工程师
  • 个人网站的成本百度公司怎么样
  • 大型网站设计首页实例搜索引擎优化的目的是
  • 江西泰飞建设有限公司网站友情链接获取的途径有哪些