当前位置: 首页 > wzjs >正文

专业网页制作网站推广公司上海优化网站seo公司

专业网页制作网站推广公司,上海优化网站seo公司,网站建设企业哪家好,一级网站和二级网站的区别下面是每种基因集评分方法的原理介绍代码示例,适用于R语言和Python两种主流生信分析环境。可以直接应用于单细胞转录组(scRNA-seq)数据分析中。 🔬 单细胞转录组基因集评分方法(附代码示例) 在单细胞RNA测…

下面是每种基因集评分方法的原理介绍+代码示例,适用于R语言和Python两种主流生信分析环境。可以直接应用于单细胞转录组(scRNA-seq)数据分析中。


🔬 单细胞转录组基因集评分方法(附代码示例)

在单细胞RNA测序(scRNA-seq)分析中,基因集评分(Gene Set Scoring)是一项关键任务,能帮助研究者识别细胞功能状态。本文介绍5种主流方法,并提供代码示例


1️⃣ AUCell:基于AUC的基因集活性评分

📌 原理

  • AUCell 使用 AUC(Area Under the Curve) 来计算基因集在单细胞数据中的活跃度
  • 不依赖数据标准化,适用于异质性较高的数据集。

💻 R 代码示例

# 1. 加载必要的包
library(AUCell)
library(SingleCellExperiment)# 2. 读取表达矩阵(假设 scRNA-seq 数据已转换为 SingleCellExperiment)
exprMatrix <- assay(sce, "counts")  # 取 count 数据# 3. 定义基因集
geneSet <- list(MyGeneSet = c("CD8A", "GZMB", "PRF1"))  # 以T细胞毒性相关基因为例# 4. 计算 AUC 分数
cells_rankings <- AUCell_buildRankings(exprMatrix, nCores = 1)
cells_AUC <- AUCell_calcAUC(geneSet, cells_rankings)# 5. 可视化结果
AUCell_plot(cells_AUC)

✅ 适用场景:适合用于检测高度活跃的基因集,例如肿瘤浸润T细胞的活化情况


2️⃣ ssGSEA:单样本基因集富集分析

📌 原理

  • 扩展自 GSEA,可计算每个样本的基因集富集得分
  • 适用于大规模数据,计算速度快,但受数据分布影响较大。

💻 R 代码示例

library(GSVA)
library(GSEABase)# 1. 读取数据
exprMatrix <- as.matrix(assay(sce, "logcounts"))  # 取 log-normalized 数据# 2. 定义基因集
geneSet <- GeneSet(setName = "T_Cell_Activation",geneIds = c("CD69", "IL2", "IFNG"),geneIdType = SymbolIdentifier())# 3. 运行 ssGSEA
ssgsea_scores <- gsva(exprMatrix, list(T_Cell_Activation = geneSet), method = "ssgsea")# 4. 绘制热图
heatmap(ssgsea_scores)

✅ 适用场景:适用于大规模数据分析,如免疫细胞功能状态的评估。


3️⃣ VAM:方差调整的马氏距离计算

📌 原理

  • 通过方差调整(Variance Adjustment)计算基因集活跃度,减少数据噪音的影响。
  • 适用于跨数据集分析,避免数据归一化带来的误差。

💻 Python 代码示例

import vam
import scanpy as sc# 1. 读取数据
adata = sc.read_h5ad("single_cell_data.h5ad")# 2. 定义基因集
gene_set = ["CD3D", "CD3E", "CD3G"]  # 例:T 细胞相关基因# 3. 计算 VAM 得分
vam_scores = vam.calculate_vam_score(adata, gene_set)# 4. 将得分存入 AnnData
adata.obs["VAM_score"] = vam_scores# 5. 可视化
sc.pl.umap(adata, color="VAM_score")

✅ 适用场景:适合用于跨数据集比较,如不同队列的免疫特征对比


4️⃣ UCell:基于秩和得分的评分方法

📌 原理

  • 采用 Spearman 秩和统计 方法计算基因集的活跃度
  • 计算效率高,适用于大规模单细胞数据

💻 R 代码示例

library(UCell)
library(Seurat)# 1. 读取 Seurat 数据
sce <- readRDS("single_cell_seurat.rds")# 2. 定义基因集
geneSet <- c("GATA3", "TBX21", "IL4")  # 例:Th1/Th2 相关基因# 3. 计算 UCell 评分
sce <- AddModuleScore_UCell(sce, features = list(Th1_Th2 = geneSet), name = "UCell")# 4. 可视化
FeaturePlot(sce, features = "UCell_Th1_Th2")

✅ 适用场景:适合大样本量数据,如全转录组水平的功能分析


5️⃣ Seurat AddModuleScore:Seurat环境下的简单评分方法

📌 原理

  • 计算目标基因集的表达均值,并与背景基因对比。
  • 适用于 Seurat 分析框架,但受批次效应影响较大。

💻 R 代码示例

library(Seurat)# 1. 读取 Seurat 数据
sce <- readRDS("seurat_obj.rds")# 2. 定义基因集
geneSet <- list(MyGeneSet = c("CCL5", "CXCL10", "GZMB"))  # 例:T 细胞趋化因子# 3. 计算模块得分
sce <- AddModuleScore(sce, features = geneSet, name = "MyGeneSet_Score")# 4. 可视化
FeaturePlot(sce, features = "MyGeneSet_Score1")

✅ 适用场景:适合Seurat 分析,如特定细胞亚群功能状态的评估


🔍 方法对比总结

方法计算方式是否需标准化计算效率适用场景
AUCellAUC 排序中等适用于高异质性数据
ssGSEA积分计算适用于大规模数据分析
VAM方差调整马氏距离中等适用于跨数据集分析
UCellSpearman 秩和适用于大规模数据
Seurat AddModuleScore均值计算适用于 Seurat 框架

📝 结论:如何选择最佳方法?

  • 研究细胞功能状态 → 试试 AUCellssGSEA
  • 想分析大规模数据?UCell 是你的最佳选择!
  • 在 Seurat 里工作?Seurat AddModuleScore 是最简单的方法!
  • 想减少批次效应影响? → 选择 VAM

http://www.dtcms.com/wzjs/394615.html

相关文章:

  • wordpress调用支付宝南宁百度seo公司
  • 鞋业有限公司网站设计域名大全查询
  • 找做网站技术人员营销方式和渠道有哪些
  • 潍坊有哪些网站推广软文300字
  • 网站域名在哪里百度一下你就知道官页
  • ps怎样做网站大图女教师遭网课入侵视频
  • 交友网站有人做加拿大28湖北网络推广公司
  • 太原市微网站建设如何做seo优化
  • 天峻县公司网站建设站内seo是什么意思
  • 济南教育论坛网站建设厦门百度seo点击软件
  • 手机做任务赚钱的网站有哪些手机网站建设案例
  • 网站托管内容自建网站流程
  • 网站导航栏一般有什么内容互联网广告投放平台加盟
  • 代做硬件毕业设计网站网站百度收录突然消失了
  • 广州网站设计找哪里短视频搜索优化
  • 竹子建站怎么样长沙seo报价
  • 网站建设实习报告范文网络营销的内容有哪些方面
  • 视频网站怎么赚钱全国各城市疫情搜索高峰进度
  • 网站建设首保服务企业网站建设案例
  • 没人做网站了吗小程序引流推广平台
  • 给自己做网站百度seo如何做
  • 腾讯云怎么做网站百度网盘网页版入口官网
  • 企业网站一般内容包括哪些关于进一步优化落实疫情防控措施
  • 自建商城seo快排公司哪家好
  • 厦门专业做网站qq推广软件
  • 最早做网站的那批人如何能查到百度搜索排名
  • 手机制作app需要什么软件谷歌seo代运营
  • 新都有没有做网站的竹子建站官网
  • 如何做网站 做论坛宝鸡seo培训
  • 做篮球管理网站的步骤广东seo点击排名软件哪里好