当前位置: 首页 > wzjs >正文

邢台县教育局五库建设网站热搜关键词查询

邢台县教育局五库建设网站,热搜关键词查询,做本地网站能赚钱么,网页传奇游戏百度目录 前言 一、 前置说明 二、二叉树的遍历 2.1前序遍历 2.2中序遍历 2.3 后序遍历 2.4层序遍历 三、二叉树的遍历的应用 3.1二叉树节点个数: 3.2二叉树的高度 3.3 二叉树第k层的节点的个数 3.4二叉树的查找 总结 前言 在数据结构的世界里,二叉…

目录

前言

一、 前置说明 

二、二叉树的遍历

2.1前序遍历

 2.2中序遍历

 2.3 后序遍历

2.4层序遍历

 三、二叉树的遍历的应用

  3.1二叉树节点个数:

 3.2二叉树的高度

3.3 二叉树第k层的节点的个数

 3.4二叉树的查找

总结


 

前言

在数据结构的世界里,二叉树是一种极其重要的结构,它以其独特的性质和广泛的应用场景而备受关注。二叉树的存储结构主要有两种:顺序存储和链式存储。今天,我们将深入探讨二叉树的链式存储结构,从其基本概念、实现方式到实际,应用帮助大家全面理解这一强大的数据结构。


一、 前置说明 

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在对二叉树结构还不够深入,为了降低学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

 

typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;BTNode* Buynode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc fail");exit(1);}node->data = x;node->left = NULL;node->right = NULL;return node;
}
BTNode* CreatTree()
{BTNode* node1 = Buynode(1);BTNode* node2 = Buynode(2);BTNode* node3 = Buynode(3);BTNode* node4 = Buynode(4);BTNode* node5 = Buynode(5);BTNode* node6 = Buynode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;return node1;
}

 在看二叉树基本操作前,首先要对二叉树的基本结构要清楚

  • 空树
  • 非空:根节点,根节点的左子树、根节点的右子树组成的。

 可以看出,二叉树的定义是递归式的,所以后续基本操作中基本都是按递归实现的,当然也是以二叉树的基本结构:根,左子树,右子树为基本展开的


二、二叉树的遍历

 学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

 二叉树的遍历有:前序/中序/后序的递归结构遍历

2.1前序遍历

前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。先访问根节点,再访问左子树,最后访问右子树

 前序遍历(根-左-右)

void PreOrder(BTNode* root)//前序遍历
{if (root == NULL){printf("NULL ");return;}printf("%d ", root->data);PreOrder(root->left);PreOrder(root->right);
}

  递归演示图:

 OR

void PreOrder(BTNode* root)//前序遍历
{if (root){printf("%d ", root->data);PreOrder(root->left);PreOrder(root->right);}
}

 递归演示图:

 

 2.2中序遍历

中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。

中序遍历(左-根-右)

void InOrder(BTNode* root)//中序遍历
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);}

 

 2.3 后序遍历

后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

 后序遍历(左-右-根)

void PostOrder(BTNode* root)//后序遍历
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);}

测试一下:

 

 

2.4层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

 

 要用到队列的结构,A节点进对列出队列的时候,把a节点的左右子数节点进队列,a节点的左子数节点就是b,然后b再出队列的时候,又把b的左右子数节点路队列,然后c节点出队列,再又把c节点的左右子数节点路队列,以此类推

void LevelOrder(BTNode* root)//层序遍历
{Queue q;Init(&q);if(root)Push(&q, root);while (!Empty(&q)){BTNode*front = QueueFront(&q);Pop(&q);printf("%d ",front->data);if (front->left){Push(&q, front->left);}if (front->right){Push(&q, front->right);}}Destroy(&q);
}

需注意的是,存入队列的是指向节点的指针,因此,需改变一下队列存储的数据类型:

typedef struct BinaryTreeNode* c;
typedef struct QueueNode
{struct QueueNode* next;c data;
}QNode;

 测试一下:


 三、二叉树的遍历的应用

  3.1二叉树节点个数:

int TreeSize(BTNode* root)
{return root == NULL ? 0 :TreeSize(root->left) +TreeSize(root->right) + 1;
}

 当然还有其他的方法 如:

定义一个全局变量size,然后用递归遍历树,每次能成功递归一次,就加一

int size = 0;
void TreeSize(BTNode* root)
{if (root == NULL)return;size++;TreeSize(root->left);TreeSize(root->right);}
int main()
{BTNode* root = CreatTree();PreOrder(root);printf("\n");InOrder(root);printf("\n");PostOrder(root);printf("\n");TreeSize(root);printf("TreeSize=%d ",size);TreeSize(root);printf("\n");printf("TreeSize=%d ", size);return 0;
}

但是最好不要用全局变量,而且每次统计数量时,还要初始化一次,要不然就会

int size = 0;
void TreeSize(BTNode* root)
{if (root == NULL)return;size++;TreeSize(root->left);TreeSize(root->right);}
int main()
{BTNode* root = CreatTree();PreOrder(root);printf("\n");InOrder(root);printf("\n");PostOrder(root);printf("\n");TreeSize(root);printf("TreeSize=%d ",size);TreeSize(root);printf("\n");printf("TreeSize=%d ", size);return 0;
}

 如果是改为局部的静态,甚至都没法初始化它,局部的静态只会在第一次调用它的时候初始化,

void TreeSize(BTNode* root)
{static int size = 0;if (root == NULL)return;size++;TreeSize(root->left);TreeSize(root->right);}

 最好的方式就是在TreeSize函数中增添一个变量psize,统计它的个数,想要形参影响实参,就要传指针,就要传地址:

void TreeSize(BTNode* root,int *psize)
{static int size = 0;if (root == NULL)return;(*psize)++;TreeSize(root->left,psize);TreeSize(root->right,psize);
}
int main()
{BTNode* root = CreatTree();PreOrder(root);printf("\n");InOrder(root);printf("\n");PostOrder(root);printf("\n");int size1 = 0;TreeSize(root,&size1);printf("TreeSize=%d ",size1);int size2 = 0;TreeSize(root,&size2);printf("\n");printf("TreeSize=%d ", size2);return 0;
}

 测试一下:


 3.2二叉树的高度

int TreeHight(BTNode* root)
{if (root == NULL)return 0;int leftHeight = TreeHight(root->left);int rightHeight = TreeHight(root->right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}

 用参数保留它递归的结果,这样就不用return的时候再递归

3.3 二叉树第k层的节点的个数

int TreeKevel(BTNode* root, int x)
{assert(x > 0);if (root == NULL)return 0;if (x == 1)return x;/* int leftK = TreeKevel(root->left, x - 1);int rightK = TreeKevel(root->right, x - 1); return leftK+rightK+1   or*/return TreeKevel(root->left, x - 1) + TreeKevel(root->right, x - 1);
}

 3.4二叉树的查找

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL || root->data == x)return root;BTNode* Findleft = BinaryTreeFind(root->left, x);if (Findleft)return Findleft;BTNode* Findright = BinaryTreeFind(root->right, x);if (Findright)return Findright;return NULL;
}

 我一开始在写的时候只写出了这样的代码,后来我画图演示递归的过程,才发现的错误,所以说要多画图

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL || root->data == x)return root;BTNode* Findleft = BinaryTreeFind(root->left, x);if (Findleft)return Findleft;BTNode* Findright = BinaryTreeFind(root->right, x);if (Findright)return Findright;
}

 查找递归演示图:

 


链式结构的优缺点

  • 优点1. 灵活性高:可以方便地表示任意形状的二叉树。
  • 2. 操作方便:插入、删除等操作只需修改指针,无需移动大量数据。
  • 3. 内存使用灵活:可以根据需要动态分配内存。
  • 缺点1. 空间开销大:每个节点需要额外存储两个指针,增加了内存开销。
  • 2. 访问效率低:链式存储无法像顺序存储那样通过下标快速访问节点。 

总结

二叉树的链式存储结构是一种强大而灵活的存储方式。它适用于各种复杂的二叉树操作,尤其是在处理非满二叉树时表现出色。通过本文的介绍,希望大家对二叉树的链式存储结构有了更深入的理解。在实际应用中,可以根据具体需求选择合适的存储方式,充分发挥链式结构的优势。


 

 

http://www.dtcms.com/wzjs/393553.html

相关文章:

  • 网页设计与制作教程电子教案完整seo排名关键词点击
  • 怎么做写真网站最吸引人的营销广告词
  • 建设网站北京市推广方案模板
  • 小区百货店网怎么做网站危机公关
  • 做网站页面设计报价优势的seo网站优化排名
  • 微网站费用2019网站seo
  • 制作网站的设计难点50篇经典软文100字
  • 做平台是做网站和微信小程序的好别做seo有什么好处
  • 优化推广网站seo企业网站的作用有哪些
  • 网站机房建设成本百度助手app下载安装
  • 官网站建设的步骤过程公司网站免费自建
  • 做公司网站要多少钱宁波网站推广优化
  • 触动网站建设广东河源最新疫情
  • 微网站营销是什么谷歌推广公司
  • 上海市建设委员会网站网站域名解析ip查询
  • 如何在微信创建公众号甘肃seo技术
  • 做app的网站有哪些功能湖州网站seo
  • 德吉机械东莞网站建设seo高级教程
  • 企业网站建设需要什么旅行网站排名
  • 海口网站建设公司排名seo权重是什么意思
  • 武汉互联网企业嘉兴百度快照优化排名
  • 最近做网站开发有前途没头条新闻
  • 望城区政府门户网站建设局网络整合营销推广
  • jz做网站今日国际军事新闻最新消息
  • 网站百度搜索第一页网站维护一年一般多少钱?
  • 郴州网站建设公司平台抖音关键词优化排名
  • 网页网站设计培训班百度网站推广申请
  • 用dw做红米网站优化网站关键词
  • 专业做婚庆的网站网络营销的发展概述
  • 新网站怎么做推广跨境电商平台有哪些?