当前位置: 首页 > wzjs >正文

怎么把网站做的靠前成都网站快速排名提升

怎么把网站做的靠前,成都网站快速排名提升,wordpress禁止自动更新,做婚恋网站赚钱吗Wan2.1 文生视频 支持批量生成、参数化配置和多语言提示词管理 flyfish 设计 一个基于 Wan2.1 文本到视频模型的自动化视频生成系统。 文件关系图 script.py ├── 读取 → config.json │ ├── 模型配置 → 加载AI模型 │ ├── 生成参数 → 控制生成质量 │ └…

Wan2.1 文生视频 支持批量生成、参数化配置和多语言提示词管理

flyfish

设计

一个基于 Wan2.1 文本到视频模型的自动化视频生成系统。

文件关系图

script.py
├── 读取 → config.json
│   ├── 模型配置 → 加载AI模型
│   ├── 生成参数 → 控制生成质量
│   └── 文件路径 → 定位其他文件
│
├── 读取 → prompt.json → 正向提示词
│
├── 读取 → negative_prompt_*.txt → 负向提示词
│
└── 输出 → 视频文件(如video_1.mp4)

1. script.py`(主程序)

  • 功能:执行AI视频生成的核心逻辑
  • 作用
    • 读取配置文件和提示词
    • 加载AI模型和参数
    • 控制视频生成流程
    • 统计生成时间和输出结果
  • 依赖:需要与配置文件和提示词文件配合使用

2. config.json(配置文件)

  • 功能:集中管理所有可配置参数
  • 作用
    • 模型配置(使用哪个模型、数据类型)
    • 生成参数(分辨率、帧数、引导强度、采样步数)
    • 文件路径(提示词文件、输出文件名格式)
  • 示例内容
    {"model": {"id": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers","torch_dtype": "bfloat16"},"generation": {"height": 480,"width": 832,"num_inference_steps": 30}
    }
    

3. prompt.json(正向提示词库)

  • 功能:存储需要生成视频的文字描述
  • 作用
    • 支持批量生成多个视频
    • 每个描述对应一个输出视频
  • 示例内容
    [{ "prompt": "一只猫在草地上行走,写实风格" },{ "prompt": "一个人在海边跑步,日落场景" }
    ]
    

4. negative_prompt_cn.txt(中文负向提示词)

  • 功能:定义不希望出现在生成结果中的元素
  • 作用
    • 提高生成质量,避免常见瑕疵
    • 语言版本与正向提示词匹配
  • 示例内容
    明亮色调,过曝,静态,细节模糊,低质量
    

5. negative_prompt_en.txt(英文负向提示词)

  • 功能:与中文负向提示词相同,提供英文版本
  • 作用
    • 适配英文正向提示词
    • 通过配置文件切换使用语言
  • 示例内容
    Bright tones, overexposed, static, blurred details, low quality
    

完整内容

import torch
import json
import os
import time
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.utils import export_to_video# ----------------------
# 读取配置文件
# ----------------------
try:with open("config.json", "r", encoding="utf-8") as f:config = json.load(f)print("已加载配置文件")
except FileNotFoundError:print("错误: 未找到config.json文件,请确保该文件与脚本在同一目录下")exit(1)
except json.JSONDecodeError:print("错误: config.json文件格式不正确,请检查JSON语法")exit(1)
except Exception as e:print(f"错误: 读取配置文件时发生异常: {e}")exit(1)# ----------------------
# 解析配置参数
# ----------------------
# 模型相关配置
model_config = config.get("model", {})
model_id = model_config.get("id", "Wan-AI/Wan2.1-T2V-1.3B-Diffusers")
vae_subfolder = model_config.get("vae_subfolder", "vae")
torch_dtype = model_config.get("torch_dtype", "bfloat16")
device = model_config.get("device", "cuda")  # 支持"cuda"或"cpu"# 生成参数配置
generation_config = config.get("generation", {})
height = generation_config.get("height", 480)
width = generation_config.get("width", 832)
num_frames = generation_config.get("num_frames", 81)
guidance_scale = generation_config.get("guidance_scale", 5.0)
fps = generation_config.get("fps", 15)
output_prefix = generation_config.get("output_prefix", "output_")
num_inference_steps = generation_config.get("num_inference_steps", 50)  # 新增采样步数# 负向提示词配置
negative_config = config.get("negative_prompt", {})
default_negative_lang = negative_config.get("default_lang", "cn")  # 支持"cn"或"en"
negative_file_map = {"cn": negative_config.get("cn_file", "negative_prompt_cn.txt"),"en": negative_config.get("en_file", "negative_prompt_en.txt")
}# 正向提示词配置
prompt_config = config.get("prompts", {})
prompt_file = prompt_config.get("file", "prompt.json")
prompt_key = prompt_config.get("key", "prompt")  # JSON中提示词字段名# ----------------------
# 读取负向提示词
# ----------------------
def read_negative_prompt(lang):filename = negative_file_map[lang]try:with open(filename, "r", encoding="utf-8") as f:return f.read().strip()except FileNotFoundError:print(f"错误: 未找到负向提示词文件 {filename}")exit(1)except Exception as e:print(f"错误: 读取负向提示词文件时发生异常: {e}")exit(1)try:negative_prompt = read_negative_prompt(default_negative_lang)print(f"已加载{default_negative_lang.upper()}负向提示词")
except:print("错误: 负向提示词加载失败")exit(1)# ----------------------
# 读取正向提示词
# ----------------------
try:with open(prompt_file, "r", encoding="utf-8") as f:prompts_data = json.load(f)print(f"已加载 {len(prompts_data)} 个正向提示词")
except FileNotFoundError:print(f"错误: 未找到正向提示词文件 {prompt_file}")exit(1)
except json.JSONDecodeError:print(f"错误: {prompt_file}文件格式不正确,请确保是有效的JSON数组")exit(1)# ----------------------
# 模型初始化
# ----------------------
start_time = time.time()# 转换torch dtype
try:dtype = getattr(torch, torch_dtype)
except AttributeError:print(f"错误: 不支持的torch dtype: {torch_dtype}")exit(1)# 加载VAE
vae = AutoencoderKLWan.from_pretrained(model_id,subfolder=vae_subfolder,torch_dtype=dtype
)# 加载管道
pipe = WanPipeline.from_pretrained(model_id,vae=vae,torch_dtype=dtype
)
pipe.to(device)model_load_time = time.time() - start_time
print(f"模型加载完成,耗时: {model_load_time:.2f} 秒")# ----------------------
# 批量生成视频
# ----------------------
total_generation_time = 0
success_count = 0for i, item in enumerate(prompts_data, 1):try:prompt = item.get(prompt_key, "")if not prompt:print(f"警告: 第 {i} 个提示词字段为空,跳过")continueprint(f"\n---- 生成第 {i} 个视频 ----")print(f"正向提示词: {prompt[:50]}...")print(f"负向提示词: {negative_prompt[:50]}...")print(f"采样步数: {num_inference_steps}")  # 新增提示# 生成时间统计gen_start = time.time()# 生成视频output = pipe(prompt=prompt,negative_prompt=negative_prompt,height=height,width=width,num_frames=num_frames,guidance_scale=guidance_scale,num_inference_steps=num_inference_steps  ).frames[0]gen_time = time.time() - gen_starttotal_generation_time += gen_timesuccess_count += 1# 保存视频output_path = f"{output_prefix}{i}.mp4"export_to_video(output, output_path, fps=fps)print(f"✅ 视频保存至: {output_path}")print(f"⏱️ 生成耗时: {gen_time:.2f} 秒")except Exception as e:print(f"❌ 生成失败: {str(e)[:100]}...")continue# ----------------------
# 生成统计
# ----------------------
print("\n==================== 生成完成 ====================")
print(f"模型信息: {model_id}")
print(f"设备: {device}")
print(f"生成参数: {height}x{width}, {num_frames}帧, 引导尺度{guidance_scale}, 采样步数{num_inference_steps}")if success_count > 0:avg_time = total_generation_time / success_countprint(f"\n📊 统计结果:")print(f"   - 模型加载时间: {model_load_time:.2f} 秒")print(f"   - 成功生成: {success_count}/{len(prompts_data)}")print(f"   - 总生成时间: {total_generation_time:.2f} 秒")print(f"   - 平均耗时: {avg_time:.2f} 秒/视频")
else:print("\n⚠️ 没有成功生成任何视频")

config.json配置文件

{"model": {"id": "/media/models/Wan-AI/Wan2___1-T2V-14B-Diffusers/","vae_subfolder": "vae","torch_dtype": "bfloat16","device": "cuda" },"generation": {"height": 640,"width": 480, "num_frames": 81,"guidance_scale": 5.0,"fps": 15, "output_prefix": "video_","num_inference_steps": 150},"negative_prompt": {"default_lang": "cn","cn_file": "negative_prompt_cn.txt","en_file": "negative_prompt_en.txt"},"prompts": {"file": "prompt.json", "key": "prompt"}
}

negative_prompt_cn.txt

明亮色调,过曝,静态,细节模糊,字幕,风格,作品,绘画,图像,静态,整体灰暗,最差质量,低质量,JPEG压缩残留,丑陋,不完整,多余手指,绘制不佳的手,绘制不佳的脸,变形,毁容,畸形肢体,融合手指,静态图片,杂乱背景,三条腿,背景中有很多人,倒退行走

negative_prompt_en.txt

Vivid tones, overexposed, static, blurry details, subtitles, style, work, painting, image, still, overall grayish, worst quality, low quality, JPEG compression artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, morphologically deformed limbs, fused fingers, still image, cluttered background, three legs, many people in the background, walking backwards

http://www.dtcms.com/wzjs/39131.html

相关文章:

  • 武汉网站制作seo基础理论
  • 嘉兴网站制作建设市场推广专员
  • 江门网站制作费用百度统计手机app
  • ps怎么做网站的首页青岛seo青岛黑八网络最强
  • 石家庄外贸网站建设一个新的app如何推广
  • php网站开发工程师招聘要求经典营销案例
  • 网站内容建设包括推广接单平台哪个好
  • web期末网站设计大作业推广方案框架
  • 国内做网上旅游业务的网站链接生成器
  • 网站建设网络推广微信网站做网站需要什么条件
  • 虚拟主机网站空间怎么样建立自己的网站
  • app对接网站查询网址域名ip地址
  • 网站建设需要哪个部门审批推广发帖网站
  • 科站网站关键词排名点击软件怎样
  • 网站建设公司 广告法被处罚今日头条搜索优化
  • 谁做网站做的比较可信子域名网址查询
  • 纯flash网站欣赏seo俱乐部
  • 网站的360快照怎么做it培训机构
  • dreamweaver网站建设教程深圳关键词优化软件
  • 电子商务网站建设与管理课程评价软文广告300字范文
  • 日本设计 网站广州专门做seo的公司
  • 浙江建设厅网站公司网站制作公司
  • 阿里巴巴网站头像你会放什么做头像品牌策划案例
  • 武汉网站制作027中国企业100强
  • 做代理的项目在哪个网站域名查询网
  • 做评选活动的网站淘宝网店的seo主要是什么
  • 天津市建设厅注册中心网站搜索广告是什么意思
  • php网站开发注意问题2345网址导航怎么卸载
  • 短视频素材免费浙江专业网站seo
  • 做网站公司怎么选今日新闻联播主要内容