当前位置: 首页 > wzjs >正文

苏州建设公司网站爱战网官网

苏州建设公司网站,爱战网官网,中国网站建设公司,海兴贴吧🍨 本文为🔗365天深度学习训练营 中的学习记录博客*🍖 参考:K同学啊 1.数据预处理 1.1硬件环境配置 import torch.nn as nn import torch.nn.functional as F import torchvision,torch# 设置硬件设备,如果有GPU则使…
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • *🍖 参考:K同学啊

1.数据预处理

1.1硬件环境配置

import torch.nn as nn
import torch.nn.functional as F
import torchvision,torch# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cpu')

1.2数据导入

import numpy             as np
import pandas            as pd
import seaborn           as sns
from sklearn.model_selection   import train_test_split
import matplotlib.pyplot as plt
plt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi']  = 500 #分辨率plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签import warnings 
warnings.filterwarnings("ignore")DataFrame=pd.read_excel('./data/dia.xls')
DataFrame.head()
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
0180544210381.252.991.070.645.31838304.99243.35010
1180544220311.151.990.840.503.98856304.72391.04710
2180544230271.292.210.690.604.19736105.87325.75110
3180544240330.932.010.660.843.60836002.40203.24020
4180544250361.172.830.830.734.83856704.09236.84300
DataFrame.shape
(1006, 16)

1.3数据检查

# 查看数据是否有缺失值
print('数据缺失值---------------------------------')
print(DataFrame.isnull().sum())
数据缺失值---------------------------------
卡号            0
性别            0
年龄            0
高密度脂蛋白胆固醇     0
低密度脂蛋白胆固醇     0
极低密度脂蛋白胆固醇    0
甘油三酯          0
总胆固醇          0
脉搏            0
舒张压           0
高血压史          0
尿素氮           0
尿酸            0
肌酐            0
体重检查结果        0
是否糖尿病         0
dtype: int64
# 查看数据是否有重复值
print('数据重复值---------------------------------')
print('数据集的重复值为:'f'{DataFrame.duplicated().sum()}')
数据重复值---------------------------------
数据集的重复值为:0

1.4数据分析

# feature_map = {
#     '年龄': '年龄',
#     '高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇',
#     '低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇',
#     '极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇',
#     '甘油三酯': '甘油三酯',
#     '总胆固醇': '总胆固醇',
#     '脉搏': '脉搏',
#     '舒张压':'舒张压',
#     '高血压史':'高血压史',
#     '尿素氮':'尿素氮',
#     '尿酸':'尿酸',
#     '肌酐':'肌酐',
#     '体重检查结果':'体重检查结果'
# }
# plt.figure(figsize=(15, 10))# for i, (col, col_name) in enumerate(feature_map.items(), 1):
#     plt.subplot(3, 5, i)
#     sns.boxplot(x=DataFrame['是否糖尿病'], y=DataFrame[col])
#     plt.title(f'{col_name}的箱线图', fontsize=14)
#     plt.ylabel('数值', fontsize=12)
#     plt.grid(axis='y', linestyle='--', alpha=0.7)# plt.tight_layout()
# plt.show()
import matplotlib.pyplot as plt
import seaborn as sns# 创建一个新的图形,并设置其大小为15x10英寸
plt.figure(figsize=(15, 10))# 遍历feature_map字典中的每个键值对
for i, (col, col_name) in enumerate(feature_map.items(), 1):# 创建一个新的子图,该子图位于3行5列的网格的第i个位置plt.subplot(3, 5, i)# 创建一个箱线图,该图显示DataFrame中是否糖尿病列与当前特征列之间的关系sns.boxplot(x=DataFrame['是否糖尿病'], y=DataFrame[col], palette="Set1")# 设置当前子图的标题为当前特征的中文名称加上"的箱线图",字体大小为14plt.title(f'{col_name}的箱线图', fontsize=14)# 设置当前子图的y轴标签为"数值",字体大小为12plt.ylabel('数值', fontsize=12)# 在当前子图的y轴上添加网格线,线型为"--",透明度为0.7plt.grid(axis='y', linestyle='--', alpha=0.7)# 调整子图之间的间距,使得它们不会相互重叠
plt.tight_layout()# 显示图形
plt.show()


在这里插入图片描述

1.5相关性分析

import plotly
import plotly.express as px# 删除列 '卡号'
DataFrame.drop(columns=['卡号'], inplace=True)
# 计算各列之间的相关系数
df_corr = DataFrame.corr()# 相关矩阵生成函数
def corr_generate(df):fig = px.imshow(df,text_auto=True,aspect="auto",color_continuous_scale='RdBu_r')fig.show()# 生成相关矩阵
corr_generate(df_corr)

在这里插入图片描述

2.LSTM模型

2.1划分数据集

from sklearn.preprocessing import StandardScaler# '高密度脂蛋白胆固醇'字段与糖尿病负相关,故而在 X 中去掉该字段
X = DataFrame.drop(['是否糖尿病','高密度脂蛋白胆固醇'],axis=1)
y = DataFrame['是否糖尿病']# 数据集标准化处理
sc_X    = StandardScaler()
X = sc_X.fit_transform(X)X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,random_state=1)
train_X.shape, train_y.shape
(torch.Size([804, 13]), torch.Size([804]))

2.2数据集构建

from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(train_X, train_y),batch_size=64, shuffle=False)test_dl  = DataLoader(TensorDataset(test_X, test_y),batch_size=64, shuffle=False)

2.3定义模型

class model_lstm(nn.Module):def __init__(self):super(model_lstm, self).__init__()self.lstm0 = nn.LSTM(input_size=13 ,hidden_size=200, num_layers=1, batch_first=True)self.lstm1 = nn.LSTM(input_size=200 ,hidden_size=200, num_layers=1, batch_first=True)self.fc0   = nn.Linear(200, 2)def forward(self, x):out, hidden1 = self.lstm0(x) out, _ = self.lstm1(out, hidden1) out    = self.fc0(out) return out   model = model_lstm().to(device)
model
model_lstm((lstm0): LSTM(13, 200, batch_first=True)(lstm1): LSTM(200, 200, batch_first=True)(fc0): Linear(in_features=200, out_features=2, bias=True)
)

3.训练模型

3.1定义训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3.2定义测试函数model

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

3.3训练模型

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4   # 学习率
opt        = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs     = 30train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))print("="*20, 'Done', "="*20)
Epoch: 1, Train_acc:56.2%, Train_loss:0.686, Test_acc:53.0%, Test_loss:0.697, Lr:1.00E-04
Epoch: 2, Train_acc:56.2%, Train_loss:0.683, Test_acc:53.0%, Test_loss:0.697, Lr:1.00E-04
Epoch: 3, Train_acc:56.2%, Train_loss:0.679, Test_acc:53.0%, Test_loss:0.695, Lr:1.00E-04
Epoch: 4, Train_acc:56.3%, Train_loss:0.675, Test_acc:53.0%, Test_loss:0.693, Lr:1.00E-04
Epoch: 5, Train_acc:56.8%, Train_loss:0.670, Test_acc:54.0%, Test_loss:0.690, Lr:1.00E-04
Epoch: 6, Train_acc:57.6%, Train_loss:0.665, Test_acc:55.4%, Test_loss:0.685, Lr:1.00E-04
Epoch: 7, Train_acc:59.5%, Train_loss:0.658, Test_acc:56.4%, Test_loss:0.679, Lr:1.00E-04
Epoch: 8, Train_acc:61.1%, Train_loss:0.649, Test_acc:58.4%, Test_loss:0.671, Lr:1.00E-04
Epoch: 9, Train_acc:64.2%, Train_loss:0.638, Test_acc:62.4%, Test_loss:0.660, Lr:1.00E-04
Epoch:10, Train_acc:67.7%, Train_loss:0.622, Test_acc:63.9%, Test_loss:0.645, Lr:1.00E-04
Epoch:11, Train_acc:69.2%, Train_loss:0.595, Test_acc:66.3%, Test_loss:0.617, Lr:1.00E-04
Epoch:12, Train_acc:72.6%, Train_loss:0.547, Test_acc:70.3%, Test_loss:0.590, Lr:1.00E-04
Epoch:13, Train_acc:74.3%, Train_loss:0.510, Test_acc:69.8%, Test_loss:0.569, Lr:1.00E-04
Epoch:14, Train_acc:75.0%, Train_loss:0.489, Test_acc:70.3%, Test_loss:0.558, Lr:1.00E-04
Epoch:15, Train_acc:75.7%, Train_loss:0.476, Test_acc:72.3%, Test_loss:0.550, Lr:1.00E-04
Epoch:16, Train_acc:76.2%, Train_loss:0.466, Test_acc:72.8%, Test_loss:0.544, Lr:1.00E-04
Epoch:17, Train_acc:77.4%, Train_loss:0.458, Test_acc:72.8%, Test_loss:0.538, Lr:1.00E-04
Epoch:18, Train_acc:77.5%, Train_loss:0.451, Test_acc:72.8%, Test_loss:0.532, Lr:1.00E-04
Epoch:19, Train_acc:77.4%, Train_loss:0.445, Test_acc:72.8%, Test_loss:0.527, Lr:1.00E-04
Epoch:20, Train_acc:78.1%, Train_loss:0.440, Test_acc:72.8%, Test_loss:0.523, Lr:1.00E-04
Epoch:21, Train_acc:78.2%, Train_loss:0.435, Test_acc:72.8%, Test_loss:0.520, Lr:1.00E-04
Epoch:22, Train_acc:78.6%, Train_loss:0.430, Test_acc:72.3%, Test_loss:0.517, Lr:1.00E-04
Epoch:23, Train_acc:79.1%, Train_loss:0.426, Test_acc:72.3%, Test_loss:0.514, Lr:1.00E-04
Epoch:24, Train_acc:79.5%, Train_loss:0.423, Test_acc:72.3%, Test_loss:0.512, Lr:1.00E-04
Epoch:25, Train_acc:79.4%, Train_loss:0.419, Test_acc:72.8%, Test_loss:0.511, Lr:1.00E-04
Epoch:26, Train_acc:79.5%, Train_loss:0.416, Test_acc:73.3%, Test_loss:0.509, Lr:1.00E-04
Epoch:27, Train_acc:79.9%, Train_loss:0.413, Test_acc:74.3%, Test_loss:0.508, Lr:1.00E-04
Epoch:28, Train_acc:80.2%, Train_loss:0.410, Test_acc:74.3%, Test_loss:0.507, Lr:1.00E-04
Epoch:29, Train_acc:80.5%, Train_loss:0.408, Test_acc:74.3%, Test_loss:0.507, Lr:1.00E-04
Epoch:30, Train_acc:80.6%, Train_loss:0.405, Test_acc:75.2%, Test_loss:0.507, Lr:1.00E-04
==================== Done ====================

4.模型评估

4.1Loss与acc

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()


在这里插入图片描述

http://www.dtcms.com/wzjs/389618.html

相关文章:

  • 长治网站开发建站系统cms
  • 网站建设与制作与维护网店营销策略有哪些
  • 网站建设与管理案例教程第三版课后答案快速关键词排名首页
  • 网站外链优化软文营销什么意思
  • 怎么建设网站啊网站优化外包找谁
  • 设计精美的中文网站百度助手手机下载
  • 哈尔滨做平台网站平台公司吗如何在百度上做广告宣传
  • 网站建设评判seo网站排名助手
  • html5个人网站源码搜索引擎营销的原理是什么
  • ps做网页怎么在网站上打开百度舆情监测平台
  • 关于建设学校网站的报告站长工具seo查询5g5g
  • 江阴高端网站建设网站开发平台有哪些
  • 销售网站建设怎么做seo课程哪个好
  • 石家庄58同城最新招聘信息seo搜索优化是什么意思
  • 屏边县住房和城乡建设局网站百度售后客服电话24小时
  • 推荐做ppt照片的网站淄博搜索引擎优化
  • 信息中心完成网站建设网站seo诊断报告怎么写
  • 网站登录页一般做多大尺寸百度24小时人工客服电话
  • 黄石市网站建设最新黑帽seo教程
  • 哪个网站上做ppt比较好建站公司排名
  • 深圳市大鹏建设局网站百度竞价开户3000
  • 电子商务网站推广策划方案怎么让付费网站免费
  • 凡科建站做的网站有什么短板seo整站优化哪家专业
  • 如何做网站宣传自己湖南长沙疫情最新消息
  • 网站开发需求描述网站seo查询工具
  • 手机网站制作公司选哪家品牌策划与推广方案
  • 网站基本功能关键词优化外包
  • 最美情侣高清免费视频播放长沙seo推广
  • wordpress视频无法播放视频播放广东网站seo营销
  • 深圳高端网站制作低价刷粉网站推广