当前位置: 首页 > wzjs >正文

java和python哪个好百度seo排名软件

java和python哪个好,百度seo排名软件,宝安中心图片,哪个网站做电商门槛最低强化学习的核心在于智能体通过与环境的交互进行学习,这种学习方式被称为 试错学习(trial-and-error learning) 。在学习强化学习之前,理解多臂老虎机问题(Multi-Armed Bandit Problem) 是一个很好的起点&am…

强化学习的核心在于智能体通过与环境的交互进行学习,这种学习方式被称为 试错学习(trial-and-error learning) 。在学习强化学习之前,理解多臂老虎机问题(Multi-Armed Bandit Problem) 是一个很好的起点,因为它可以被视为强化学习的一个简化版本。

与强化学习不同,多臂老虎机问题中不存在状态信息,只有动作和奖励,因此它是“智能体与环境交互学习”的最简单形式。多臂老虎机问题中的 探索与利用(exploration vs. exploitation)是一个经典问题。

探索与利用的定义

利用(Exploitation) : 基于当前已知的信息,选择能够带来最大收益的决策。

  • 优势:最大化当前收益。
  • 风险:可能错过更优的决策,陷入局部最优。

探索(Exploration) : 尝试新的或不确定的决策,以获取更多信息。

  • 优势:可能发现更优的决策,提升长期收益。
  • 风险:短期内可能无法获得最大收益。

问题介绍

在多臂老虎机(Multi-Armed Bandit, MAB)问题中,我们面对一台拥有 K  根拉杆的老虎机,每根拉杆都对应一个独立的奖励概率分布 R 。每次拉动一根拉杆,我们都会从该拉杆对应的奖励分布中获得一个奖励。问题的关键在于,这些奖励分布是未知的,而我们的目标是在 T 次操作后,尽可能获得最高的累积奖励。 由于我们不知道每根拉杆的奖励分布,因此需要在探索(exploration) 和利用(exploitation)之间进行权衡:

  • 探索 :尝试拉动不同的拉杆,以了解每根拉杆的奖励分布。
  • 利用 :根据当前的经验,选择已知奖励最高的拉杆,以最大化当前收益。

多臂老虎机问题的核心在于如何设计一种操作策略,在探索和利用之间找到最佳平衡,从而在 T 次操作后获得最高的累积奖励。

多臂老虎机问题可以表示为一个元组 <A, R>,其中:

  •  A为动作集合,其中一个动作表示拉动一个拉杆。若多臂老虎机一共有K根拉杆,那动作空间就是集合\{a_1,a_2,...,a_k\},我们用a_t \in A表示任意一个动作;
  •  R为奖励概率分布,拉动每一根拉杆的动作都对应一个奖励概率分布R(r|a),不同拉杆的奖励分布通常是不同的。

假设每个时间步只能拉动一个拉杆,多臂老虎机的目标为最大化一段时间步T内累积的奖励: max\sum^T_{t=1}r_t,r_t\sim R(\cdot |a_t)。其中a_t表示在第时间步拉动某一拉杆的动作,表示动作获得的奖励。

累积懊悔

对于每一个动作,我们定义其期望奖励为:

E_{a\sim R(\cdot |a)}[r]

于是,至少存在一根拉杆,它的期望奖励不小于拉动其他任意一根拉杆,我们将该最优期望奖励表示为:

 Q^*=max_{a\in A}Q(a)

为了更加直观、方便地观察拉动一根拉杆的期望奖励离最优拉杆期望奖励的差距,我们引入懊悔(regret)概念。懊悔定义为拉动当前拉杆的动作a与最优拉杆的期望奖励差,即:

R(a)=Q^*-Q(a) 

累积懊悔(cumulative regret)即操作 T 次拉杆后累积的懊悔总量,对于一次完整的 T 步决策\{a_1,a_2,...,a_T\},累积懊悔为:

 \sigma_R=\sum ^{T}_{t=1}R(a_t)

MAB 问题的目标为最大化累积奖励,等价于最小化累积懊悔

如果一直保持探索性的策略,一定会有一个regret成线性增长。如果一直探索新策略,\sigma_R \propto T \cdot R,total regret将线性递增,无法收敛;如果一直不探索新策略,\sigma_R \propto T \cdot R,total regret仍将线性递增。那么是否存在一个方法具有次线性收敛保证的regret呢?

估计期望奖励

为了知道拉动哪一根拉杆能获得更高的奖励,我们需要估计拉动这根拉杆的期望奖励。由于只拉动一次拉杆获得的奖励存在随机性,所以需要多次拉动一根拉杆,然后计算得到的多次奖励的期望,其算法流程如下所示。

  • 对于\forall a\in A,初始化计数器 N(a)=0 和期望奖励估值\hat{Q}(a)=c^i
  • for  t=1\rightarrow T​​​​​​​do
    •  选取某根拉杆,该动作记为 a_t
    •  得到奖励 r_t=Bandint(a)
    •  更新计数器: N(a)=N(a)+1
    •  更新期望奖励估值:\hat{Q}(a)=\hat{Q}(a)+\frac{1}{N(a)}(r-\hat{Q}(a))
  • end for

以上 for 循环中的第四步如此更新估值,是因为这样可以进行增量式的期望更新,公式如下。

在多臂老虎机问题中,我们需要估计每根拉杆的奖励概率分布。如果采用 直接求和再除以次数 的方法,每次更新奖励均值的 时间复杂度 和 空间复杂度 均为 O ( n ),其中 n  是拉杆被拉动的次数。这种方法的缺点是效率较低,尤其是在 n 很大时,计算和存储成本会显著增加。 相比之下,采用 增量式更新 的方法,可以显著提高效率。增量式更新的 时间复杂度 和 空间复杂度 均为 O(1) ,因为每次更新只需要记录当前均值和拉杆被拉动的次数,而不需要存储所有历史数据。下面我们编写代码来实现一个拉杆数为 10 的多臂老虎机。其中拉动每根拉杆的奖励服从伯努利分布(Bernoulli distribution),即每次拉下拉杆有p的概率获得的奖励为 1,有(1-p)的概率获得的奖励为 0。奖励为 1 代表获奖,奖励为 0 代表没有获奖。

# 导入需要使用的库,其中numpy是支持数组和矩阵运算的科学计算库,而matplotlib是绘图库
import numpy as np
import matplotlib.pyplot as pltclass BernoulliBandit:""" 伯努利多臂老虎机,输入K表示拉杆个数 """def __init__(self, K):self.probs = np.random.uniform(size=K)  # 随机生成K个0~1的数,作为拉动每根拉杆的获奖# 概率self.best_idx = np.argmax(self.probs)  # 获奖概率最大的拉杆self.best_prob = self.probs[self.best_idx]  # 最大的获奖概率self.K = Kdef step(self, k):# 当玩家选择了k号拉杆后,根据拉动该老虎机的k号拉杆获得奖励的概率返回1(获奖)或0(未# 获奖)if np.random.rand() < self.probs[k]:return 1else:return 0np.random.seed(1)  # 设定随机种子,使实验具有可重复性
K = 10
bandit_10_arm = BernoulliBandit(K)
print("随机生成了一个%d臂伯努利老虎机" % K)
print("获奖概率最大的拉杆为%d号,其获奖概率为%.4f" %(bandit_10_arm.best_idx, bandit_10_arm.best_prob))

接下来我们用一个 Solver 基础类来实现上述的多臂老虎机的求解方案。根据前文的算法流程,我们需要实现下列函数功能:根据策略选择动作、根据动作获取奖励、更新期望奖励估值、更新累积懊悔和计数。在下面的 MAB 算法基本框架中,我们将根据策略选择动作根据动作获取奖励更新期望奖励估值放在 run_one_step() 函数中,由每个继承 Solver 类的策略具体实现。而更新累积懊悔和计数则直接放在主循环 run() 中。

class Solver:""" 多臂老虎机算法基本框架 """def __init__(self, bandit):self.bandit = banditself.counts = np.zeros(self.bandit.K)  # 每根拉杆的尝试次数self.regret = 0.  # 当前步的累积懊悔self.actions = []  # 维护一个列表,记录每一步的动作self.regrets = []  # 维护一个列表,记录每一步的累积懊悔def update_regret(self, k):# 计算累积懊悔并保存,k为本次动作选择的拉杆的编号self.regret += self.bandit.best_prob - self.bandit.probs[k]self.regrets.append(self.regret)def run_one_step(self):# 返回当前动作选择哪一根拉杆,由每个具体的策略实现raise NotImplementedErrordef run(self, num_steps):# 运行一定次数,num_steps为总运行次数for _ in range(num_steps):k = self.run_one_step()self.counts[k] += 1self.actions.append(k)self.update_regret(k)
http://www.dtcms.com/wzjs/380293.html

相关文章:

  • 做网站是不是太麻烦了宁波网站seo公司
  • 设计工作室怎么找客户北京优化推广公司
  • 制作网站背景怎么做沪深300指数怎么买
  • 沈阳免费做网站网站分析案例
  • 怎么自己做网站服务器seo技术交流
  • 高端网站设计供应商360搜索引擎首页
  • 生物医药基地网站建设北京做网站公司哪家好
  • 求生之路2怎么做非官方网站发帖秒收录的网站
  • 做二手货车都做什么网站最新消息
  • 网站制作 网站建设如何建立网址
  • 固定ip 建网站seo搜索引擎优化实训报告
  • 2345电脑版seo优化网站优化排名
  • 烟台百度网站排名seo霸屏
  • 做服装商城网站论文seo学校
  • 江苏网站建设网络公司百度推广app下载
  • 企业网站推广的首选办法是seo推广官网
  • wordpress模板用法宁波网站推广优化外包
  • 网站解析记录值如何推广引流
  • 阜阳手机网站建设互联网营销师报名官网
  • 如何做发表文章的网站p2p万能搜索引擎
  • 手机端网站建设方案代写文案平台
  • 景德镇市建设局网站seo数据统计分析工具有哪些
  • 做机械设备类网站用什么颜色好新闻头条最新消息今天
  • c2b模式的电商平台有哪些seo教程自学网
  • 网页设计心得体会报告长沙网站seo优化
  • ruby网站开发工程师招聘汕头seo外包平台
  • 南京高端网站制作关键词排名点击软件网站
  • 免费网站收录seo站群优化
  • 4d网站广告图用什么做的网页设计与制作作业成品
  • 简单的美食网站模板免费下载sem是什么意思呢