当前位置: 首页 > wzjs >正文

最好网站建设公司排名百度seo和sem

最好网站建设公司排名,百度seo和sem,推荐一个代做毕业设计的网站,广东网站备案要求一 肘部法则 在K-means算法中,对于确定K(簇的数目),我们经常使用肘部法则。 肘部法则是一种用于确定在k均值聚类算法中使用的质心数(k)的技术。 在这种方法中,为了确定k值,我们连续…

一 肘部法则

在K-means算法中,对于确定K(簇的数目),我们经常使用肘部法则。 肘部法则是一种用于确定在k均值聚类算法中使用的质心数(k)的技术。 在这种方法中,为了确定k值,我们连续迭代k=1到k=n(这里n是我们根据要求选择的超参数)。对于k的每个值,我们计算簇内平方和(WCSS)值。

WCSS -每个样本到簇内中心点的距离偏差之和。

现在,为了确定最佳的聚类数(k),我们绘制了k与它们的WCSS值的关系图。令人惊讶的是,该图看起来像一个肘部(我们将在后面看到)。此外,当k=1时,WCSS具有最高值,但随着k值的增加,WCSS值开始减小。我们从图开始看起来像直线的地方选择k值。

二 实战

下面我们将分4步实现肘部法则。首先,我们将创建随机数据集点,然后我们将在此数据集上应用k均值,并计算1到4之间的k的wcss值。

  1. 导入所需库

    from sklearn.cluster import KMeans
    from sklearn import metrics
    from scipy.spatial.distance import cdist
    import numpy as np
    import matplotlib.pyplot as plt
    
  2. 创建和可视化数据

    我们将创建一个随机数组并将其分布可视化

    # Creating the data
    x1 = np.array([3, 1, 1, 2, 1, 6, 6, 6, 5, 6,\7, 8, 9, 8, 9, 9, 8, 4, 4, 5, 4])
    x2 = np.array([5, 4, 5, 6, 5, 8, 6, 7, 6, 7, \1, 2, 1, 2, 3, 2, 3, 9, 10, 9, 10])
    X = np.array(list(zip(x1, x2))).reshape(len(x1), 2)# Visualizing the data
    plt.plot()
    plt.xlim([0, 10])
    plt.ylim([0, 10])
    plt.title('Dataset')
    plt.scatter(x1, x2)
    plt.show()
    

    从上面的可视化中,我们可以看到集群的最佳数量应该在3左右。但是,仅仅可视化数据并不能总是给予正确的答案。

    定义一个 Distortion = 1/n * Σ(distance(point, centroid)^2), 通常,使用欧几里得距离度量。

    Inertia = Σ(distance(point, centroid)^2)是样本到其最近聚类中心的平方距离之和。

    我们将k的值从1迭代到n,并计算每个k值的Distortion,给定范围内每个k值的Inertia。

  3. 构建聚类模型并计算Distortion和Inertia的值

    distortions = []
    inertias = []
    mapping1 = {}
    mapping2 = {}
    K = range(1, 10)for k in K:# Building and fitting the modelkmeanModel = KMeans(n_clusters=k).fit(X)kmeanModel.fit(X)distortions.append(sum(np.min(cdist(X, kmeanModel.cluster_centers_,'euclidean'), axis=1)) / X.shape[0])inertias.append(kmeanModel.inertia_)mapping1[k] = sum(np.min(cdist(X, kmeanModel.cluster_centers_,'euclidean'), axis=1)) / X.shape[0]mapping2[k] = kmeanModel.inertia_
    
  4. 列表和可视化结果

    (1)使用不同的Distortion值:

    for key, val in mapping1.items():print(f'{key} : {val}')
    

    输出:

    1 : 3.625551331197001
    2 : 2.0318238533112596
    3 : 1.2423303391744152
    4 : 0.8367738708386461
    5 : 0.736979754424859
    6 : 0.6898254810112422
    7 : 0.6020311621770951
    8 : 0.5234596363982826
    9 : 0.4587221418509788
    

    接下来我们将绘制k与WCSS的关系图:

    plt.plot(K, distortions, 'bx-')
    plt.xlabel('Values of K')
    plt.ylabel('Distortion')
    plt.title('The Elbow Method using Distortion')
    plt.show()
    

    (2)使用不同的Inertia:

    for key, val in mapping2.items():print(f'{key} : {val}')
    

    输出:

    1 : 312.95238095238096
    2 : 108.07142857142856
    3 : 39.51746031746031
    4 : 17.978571428571428
    5 : 14.445238095238096
    6 : 11.416666666666668
    7 : 9.266666666666667
    8 : 7.25
    9 : 6.5
    
    plt.plot(K, inertias, 'bx-')
    plt.xlabel('Values of K')
    plt.ylabel('Inertia')
    plt.title('The Elbow Method using Inertia')
    plt.show()
    

    为了确定聚类的最佳数量,我们必须选择“弯头”处的k值,即distortion/inertia开始以线性方式减小的点。因此,对于给定的数据,我们得出结论,数据的最佳聚类数是4。

我们将绘制针对不同k值聚类的数据点的图像。为此,我们将通过迭代k值的范围来对数据集应用k-means算法。

import matplotlib.pyplot as plt# Create a range of values for k
k_range = range(1, 5)# Initialize an empty list to
# store the inertia values for each k
inertia_values = []# Fit and plot the data for each k value
for k in k_range:kmeans = KMeans(n_clusters=k, \init='k-means++', random_state=42)y_kmeans = kmeans.fit_predict(X)inertia_values.append(kmeans.inertia_)plt.scatter(X[:, 0], X[:, 1], c=y_kmeans)plt.scatter(kmeans.cluster_centers_[:, 0],\kmeans.cluster_centers_[:, 1], \s=100, c='red')plt.title('K-means clustering (k={})'.format(k))plt.xlabel('Feature 1')plt.ylabel('Feature 2')plt.show()# Plot the inertia values for each k
plt.plot(k_range, inertia_values, 'bo-')
plt.title('Elbow Method')
plt.xlabel('Number of clusters (k)')
plt.ylabel('Inertia')
plt.show()

http://www.dtcms.com/wzjs/372647.html

相关文章:

  • 台州网站建设 推广公司事件营销的案例有哪些
  • 网站开发流行语言营销软文500字范文
  • 网站改版服务百度排名优化咨询电话
  • 做独立网站的好处百度竞价怎么收费
  • 网站建设的有什么需求seo自动优化软件下载
  • 百度搜一搜哪里搜索引擎优化好
  • 51比购网官方网站b站推广软件
  • 深圳朝阳电子网站建设策划推广方案
  • 软件开发要什么学历seo网站建设
  • 二手网站哪些做的比较好百度推广app怎么收费
  • 西安哪里有做网站的系统优化大师下载
  • 高端网站开发公开课河南网站建设哪个公司做得好
  • 企业网站建设管理平台百度软件安装
  • 2017年网站建设高职考f卷中国搜索引擎排名
  • html5手机wap网站模板品牌策略
  • 网站推广其他方案内容上海百度seo网站优化
  • 网站设置不能通过链接访问推广网站源码
  • 网站建设用什么软件好saascrm国内免费pdf
  • php是做网站还是网页自助建站系统软件
  • 服装网站建设都有哪些seo关键字优化技巧
  • 网站制作的销售对象聚名网
  • 门户网站源码免费外国网站浏览器
  • 企业网站托管和网站建设服务商搜索引擎优化趋势
  • 北京在线建站模板超级软文网
  • 遵义网站开发哪家好今天热搜前十名
  • 中信建设有限责任公司初晓站长工具查询seo
  • 湛江网站的建设网络营销专业
  • wifi小程序怎么赚钱宁波seo关键词培训
  • web前端网站开发实训报告百度网址大全简单版
  • 福建省住房城乡建设部网站杭州seo专员