当前位置: 首页 > wzjs >正文

国外美容网站品牌全网推广

国外美容网站,品牌全网推广,wordpress用什么语言,网站开发费 会计科目文章目录 一、前言二、堆的基本概念1. 堆的定义2. 堆的存储方式 三、堆的基本操作1. 插入操作(Insert)C 实现(大根堆) 2. 删除堆顶元素(Extract Max / Min)C 实现(大根堆) 3. 堆排序…

文章目录

    • 一、前言
    • 二、堆的基本概念
      • 1. 堆的定义
      • 2. 堆的存储方式
    • 三、堆的基本操作
      • 1. 插入操作(Insert)
        • C++ 实现(大根堆)
      • 2. 删除堆顶元素(Extract Max / Min)
        • C++ 实现(大根堆)
      • 3. 堆排序(Heap Sort)
        • C++ 实现
    • 五、堆的应用
      • 1. **优先队列**
      • 2. **求 Top K 问题**
      • 3. **Dijkstra 最短路径算法**
    • 六、总结


一、前言

在数据结构中,堆(Heap)是一种特殊的完全二叉树,通常用于实现优先队列(Priority Queue)。堆分为大根堆(Max Heap)小根堆(Min Heap),分别适用于不同的应用场景,例如堆排序求Top K问题Dijkstra最短路径算法等。

本文将介绍堆的概念、基本操作、应用以及C++和Python的代码实现。


二、堆的基本概念

1. 堆的定义

堆是一种完全二叉树,并且满足以下性质:

  • 大根堆(最大堆): 父节点的值总是大于等于子节点的值。
  • 小根堆(最小堆): 父节点的值总是小于等于子节点的值。

完全二叉树:如果树的每一层都被完全填满(除了可能的最后一层),并且最后一层的节点靠左对齐,则称其为完全二叉树。

2. 堆的存储方式

堆通常用数组存储,父子关系通过索引计算:

  • 父节点索引: parent(i) = (i - 1) / 2
  • 左子节点索引: left(i) = 2 * i + 1
  • 右子节点索引: right(i) = 2 * i + 2

三、堆的基本操作

1. 插入操作(Insert)

插入新元素的步骤:

  1. 将元素放入数组的末尾。
  2. 进行上浮(Heapify-Up)操作,调整堆结构。
C++ 实现(大根堆)
#include <iostream>
#include <vector>
using namespace std;class MaxHeap {
private:vector<int> heap;void heapifyUp(int index) {while (index > 0) {int parent = (index - 1) / 2;if (heap[parent] >= heap[index]) break;swap(heap[parent], heap[index]);index = parent;}}public:void insert(int value) {heap.push_back(value);heapifyUp(heap.size() - 1);}void printHeap() {for (int num : heap) cout << num << " ";cout << endl;}
};int main() {MaxHeap heap;heap.insert(10);heap.insert(20);heap.insert(5);heap.insert(30);heap.printHeap();return 0;
}

输出示例:

30 20 5 10

2. 删除堆顶元素(Extract Max / Min)

删除堆顶元素的步骤:

  1. 将堆顶元素与堆的最后一个元素交换,并移除最后一个元素。
  2. 进行下沉(Heapify-Down)操作,调整堆结构。
C++ 实现(大根堆)
void heapifyDown(int index) {int size = heap.size();while (true) {int left = 2 * index + 1;int right = 2 * index + 2;int largest = index;if (left < size && heap[left] > heap[largest]) largest = left;if (right < size && heap[right] > heap[largest]) largest = right;if (largest == index) break;swap(heap[index], heap[largest]);index = largest;}
}void removeMax() {if (heap.empty()) return;heap[0] = heap.back();heap.pop_back();heapifyDown(0);
}

3. 堆排序(Heap Sort)

堆排序的基本思想:

  1. 建堆(Heapify):将无序数组转换为堆结构。

  2. 排序

    • 交换堆顶元素与最后一个元素,并移除最后一个元素。
    • 重新调整堆结构(Heapify-Down)。
    • 重复此过程,直到所有元素有序。
C++ 实现
void heapSort(vector<int>& arr) {int n = arr.size();// 构建最大堆for (int i = n / 2 - 1; i >= 0; i--) {heapify(arr, n, i);}// 交换并调整堆for (int i = n - 1; i > 0; i--) {swap(arr[0], arr[i]);heapify(arr, i, 0);}
}

五、堆的应用

1. 优先队列

堆可以高效地实现优先队列,使得插入和取出最大(最小)值的时间复杂度为O(log N)

2. 求 Top K 问题

使用大小为 K 的最小堆,可以在 O(N log K) 的时间内求出前 K 大的元素。

import heapqdef topK(nums, k):return heapq.nlargest(k, nums)  # 取前 K 个最大元素print(topK([3, 1, 5, 12, 2, 11], 3))  # [12, 11, 5]

3. Dijkstra 最短路径算法

在图算法中,堆被用于优化最短路径算法,以高效找到当前最短路径的顶点。


六、总结

  1. 堆是完全二叉树,常用于实现优先队列。
  2. 堆的基本操作:插入(Heapify-Up)、删除(Heapify-Down)、堆排序。
  3. 堆的应用广泛,包括 Top K 问题、Dijkstra 算法等。

堆的高效性使其在数据流处理、搜索优化、任务调度等场景下广泛使用,是数据结构中非常重要的一部分。

http://www.dtcms.com/wzjs/371987.html

相关文章:

  • 广州市城市建设档案馆网站衡水seo培训
  • 传媒大学附近网站建设公司网店运营培训
  • 网站建设的收费口碑营销的定义
  • 什么网站可以接图做图超级优化空间
  • 怎么推广自己做的网站百度关键词优化手段
  • 网站制作的相关术语seo短视频网页入口
  • 电子商务网站建设教材短视频精准获客系统
  • 门户网站app开发优化深圳seo
  • 广州企业建站系统模板集客营销软件官方网站
  • 足球哪个网站做的比较好好f123网站
  • 自己做的一个网站怎么赚钱品牌策划公司
  • 深圳市住房和建设委员会网站济南网站优化培训
  • 蒙自网站建设培训机构在哪个平台找
  • 企业网站改版方案百度一下你就知道了
  • 自己设计logo用什么软件seo商城
  • 北京欢迎你网站建设b站视频推广的方法有哪些
  • wordpress首页摘要设置济南seo网站排名优化工具
  • 做响应式网站应该注意什么吸引顾客的营销策略
  • 菏泽seo网络优化工程师招聘信息
  • 海口网站开发师招聘短视频营销策划方案
  • 有什么好的网站做推广的网络营销工程师前景
  • 重庆宣传网站怎么做泉州seo网站排名
  • 网站浮窗制作重庆seo论
  • 在线制作表白网站关键词怎样做优化排名
  • 阿里云可以几个网站直通车推广计划方案
  • 北京seo优化厂家seo站内优化教程
  • 网站维护工作的基本内容谷歌seo一个月费用需要2万吗
  • 无锡建设网站百度建站平台官网
  • 网站开发合同中英文开发网站多少钱
  • 万网网站价格头条搜索站长平台