当前位置: 首页 > wzjs >正文

网站的标题与关键词aso优化排名

网站的标题与关键词,aso优化排名,xampp做网站可以吗,景观设计师证怎么考浙大疏锦行 Python Day11内容:参数:手动设置(超参数),模型学习(内参数)模型 算法 参数寻找参数框架:网格搜索(爆搜),随机搜索,贝叶斯…

@浙大疏锦行 Python Day11

内容:

  • 参数:手动设置(超参数),模型学习(内参数)
  • 模型 = 算法 + 参数
  • 寻找参数框架:网格搜索(爆搜),随机搜索,贝叶斯搜索(优化随机搜索)
  • `time`库计时
import timestart_time = time.time()
# proc...
end_time = time.time()print(f"time is {end_time - start_time}")

 代码:

import pandas as pd  # 用于数据处理和分析,可处理表格数据。
import numpy as np  # 用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt  # 用于绘制各种类型的图表
import seaborn as sns  # 基于matplotlib的高级绘图库,能绘制更美观的统计图形。
from sklearn.svm import SVC #支持向量机分类器
from sklearn.neighbors import KNeighborsClassifier #K近邻分类器
from sklearn.linear_model import LogisticRegression #逻辑回归分类器
import xgboost as xgb #XGBoost分类器
import lightgbm as lgb #LightGBM分类器
from sklearn.ensemble import RandomForestClassifier #随机森林分类器
from catboost import CatBoostClassifier #CatBoost分类器
from sklearn.tree import DecisionTreeClassifier #决策树分类器
from sklearn.naive_bayes import GaussianNB #高斯朴素贝叶斯分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
from sklearn.model_selection import train_test_split# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号data = pd.read_csv("./data/heart.csv")# 这里不需要处理离散值以及缺失值
X = data.drop(['target'], axis=1)
y = data['target']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)print("----------默认参数的随机森林-------------")
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(f"预测精度为:{accuracy_score(y_pred, y_test)}")
print("---------默认参数的随机森林结束------------")
print("----------网格搜索的随机森林-------------")
from sklearn.model_selection import GridSearchCV
import time
# 定义要搜索的参数网格
param_grid = {'n_estimators': [50, 100, 200],'max_depth': [None, 10, 20, 30],'min_samples_split': [2, 5, 10],'min_samples_leaf': [1, 2, 4]
}
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42), # 随机森林分类器param_grid=param_grid, # 参数网格cv=5, # 5折交叉验证n_jobs=-1, # 使用所有可用的CPU核心进行并行计算scoring='accuracy') # 使用准确率作为评分标准
start_time = time.time()
grid_search.fit(X_train, y_train)
end_time = time.time()
print(f"网格搜索耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n网格搜索优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("网格搜索优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
print("-------------网格搜索随机森林结束-----------------")
print("-------------贝叶斯参数随机森林-------------------")
from skopt import BayesSearchCV
from skopt.space import Integer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
import time# 定义要搜索的参数空间
search_space = {'n_estimators': Integer(50, 200),'max_depth': Integer(10, 30),'min_samples_split': Integer(2, 10),'min_samples_leaf': Integer(1, 4)
}# 创建贝叶斯优化搜索对象
bayes_search = BayesSearchCV(estimator=RandomForestClassifier(random_state=42),search_spaces=search_space,n_iter=32,  # 迭代次数,可根据需要调整cv=5, # 5折交叉验证,这个参数是必须的,不能设置为1,否则就是在训练集上做预测了n_jobs=-1,scoring='accuracy'
)start_time = time.time()
# 在训练集上进行贝叶斯优化搜索
bayes_search.fit(X_train, y_train)
end_time = time.time()print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", bayes_search.best_params_)# 使用最佳参数的模型进行预测
best_model = bayes_search.best_estimator_
best_pred = best_model.predict(X_test)print("\n贝叶斯优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("贝叶斯优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))print("-------------贝叶斯结束---------------")
http://www.dtcms.com/wzjs/357568.html

相关文章:

  • 网站建设论文的摘要营销案例分析
  • 想要将网站信息插到文本链接怎么做百度统计流量研究院
  • 哪些公司经常做网站个人永久免费自助建站
  • 安阳做网站电话如何做公司网站推广
  • 做静态网站有什么建议吸引人的软文
  • 怎样建单位的网站seo推广工具
  • 网站服务器计算机安全的措施网站制作过程
  • 建设厅安全员证书查询网站网站推广app下载
  • 知名响应式网站企业站长工具爱情岛
  • 快递网站怎么做的中国国家培训网
  • 徐州网站建设推广怎么做百度推广运营
  • 大型门户网站建设方案网络营销的目的和意义
  • 旅游网站系统wordpress深圳网站推广公司
  • 设计的好看的网站页面关键词优化
  • 简单网站建设百度推广最简单方法
  • 发外链软件河南整站百度快照优化
  • 网站关键词提升星力游戏源码
  • 平价网站平价网站建设建设百度安装app
  • 网站 微信小程序怎么做北京专业seo公司
  • 网站赏析案例百度产品优化排名软件
  • 用dw做网站用什么主题比较好新站网站推广公司
  • 建设网站全部流程如何做关键词优化
  • 品牌网站建设 磐石网络的确好做谷歌推广比较好的公司
  • 家用机做网站服务器英语seo
  • 不良人网页设计怎么做上海seo网站推广公司
  • 丰台做网站承接网络推广外包业务
  • 定制软件下载杭州最专业的seo公司
  • 搜搜网站提交入口seo优化大公司排名
  • 公司网站建设费属于宣传费吗江苏seo推广
  • 网站建设素材网百度竞价排名医院事件