当前位置: 首页 > wzjs >正文

网站整体框架广告公司是做什么的

网站整体框架,广告公司是做什么的,wordpress会员权限,网站建设 媒体广告图机器学习(10)——监督学习中的图神经网络1. 图卷积神经网络2. 使用 GCN 进行图分类3. 使用 GraphSAGE 进行节点分类1. 图卷积神经网络 在无监督图学习中,我们学习了图神经网络 (graph nerual network, GNN) 和图卷积网络 (graph convoluti…

图机器学习(10)——监督学习中的图神经网络

    • 1. 图卷积神经网络
    • 2. 使用 GCN 进行图分类
    • 3. 使用 GraphSAGE 进行节点分类

1. 图卷积神经网络

在无监督图学习中,我们学习了图神经网络 (graph nerual network, GNN) 和图卷积网络 (graph convolutional network, GCN) 的核心原理,重点区分了谱图卷积与空间图卷积的差异。具体而言,我们深入理解了 GCN 层如何通过保持节点相似性等图属性,在无监督环境下实现图结构或节点的编码。
在本节中,将探索监督学习框架下的这些方法。此时的核心目标转变为:学习能够精准预测节点或图标签的图/节点表征。需要注意的是,编码函数保持不变,改变的是优化目标。

2. 使用 GCN 进行图分类

(1) 使用 PROTEINS 数据集:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.data import DataLoader
from torch_geometric.nn import global_sort_pool, GCNConv
from torch_geometric.datasets import TUDataset
from sklearn.model_selection import train_test_split
import numpy as np# Load PROTEINS dataset
dataset = TUDataset(root='data/TUDataset', name='PROTEINS')

(2) 接下来,实现图分类 GCN 算法。构建 GCN 模型:

class DGCNN(nn.Module):def __init__(self, hidden_channels=32, num_layers=4, k=35):super(DGCNN, self).__init__()self.k = kself.convs = nn.ModuleList()for _ in range(num_layers):self.convs.append(GCNConv(-1, hidden_channels))# Corrected Conv1d layersself.conv1 = nn.Conv1d(hidden_channels * num_layers, 16, kernel_size=1)self.pool = nn.MaxPool1d(kernel_size=2)self.conv2 = nn.Conv1d(16, 32, kernel_size=5, stride=1)# Calculate the correct input size for the linear layer# After sort pooling: [batch_size, k * hidden_channels * num_layers]# After conv1: [batch_size, 16, k]# After pool: [batch_size, 16, k//2]# After conv2: [batch_size, 32, (k//2)-4]linear_input_size = 32 * ((k // 2) - 4)self.fc1 = nn.Linear(linear_input_size, 128)self.dropout = nn.Dropout(0.5)self.fc2 = nn.Linear(128, 1)def forward(self, x, edge_index, batch):xs = []for conv in self.convs:x = torch.tanh(conv(x, edge_index))xs.append(x)x = torch.cat(xs, dim=1)x = global_sort_pool(x, batch, self.k)  # [batch_size, k * hidden_channels * num_layers]# Reshape for Conv1d: [batch_size, channels, sequence_length]batch_size = len(torch.unique(batch))x = x.view(batch_size, self.k, -1)  # [batch_size, k, hidden_channels * num_layers]x = x.permute(0, 2, 1)  # [batch_size, hidden_channels * num_layers, k]x = F.relu(self.conv1(x))x = self.pool(x)x = F.relu(self.conv2(x))x = x.view(batch_size, -1)  # Flattenx = F.relu(self.fc1(x))x = self.dropout(x)x = torch.sigmoid(self.fc2(x))return x

(3) 实例化模型,使用二元交叉熵损失函数(用于衡量预测标签与真实标签之间的差异),并使用 Adam 优化器,学习率为 0.0001

model = DGCNN(hidden_channels=32, num_layers=4, k=35)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
criterion = nn.BCELoss()device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

(4) 创建训练集和测试集,在本节中,使用 70% 的数据集作为训练集,剩余的作为测试集:

train_idx, test_idx = train_test_split(range(len(dataset)), test_size=0.3, stratify=[data.y.item() for data in dataset],random_state=42
)train_dataset = dataset[train_idx]
test_dataset = dataset[test_idx]train_loader = DataLoader(train_dataset, batch_size=50, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)

(5) 训练模型 100epoch

def train():model.train()total_loss = 0for data in train_loader:data = data.to(device)optimizer.zero_grad()out = model(data.x, data.edge_index, data.batch)loss = criterion(out, data.y.float().unsqueeze(1))loss.backward()optimizer.step()total_loss += loss.item() * data.num_graphsreturn total_loss / len(train_dataset)def test(loader):model.eval()correct = 0for data in loader:data = data.to(device)with torch.no_grad():pred = model(data.x, data.edge_index, data.batch)pred = (pred > 0.5).float()correct += int((pred == data.y.unsqueeze(1)).sum())return correct / len(loader.dataset)# Training loop
for epoch in range(1, 101):loss = train()train_acc = test(train_loader)test_acc = test(test_loader)print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')

训练过程输出如下所示,可以看到在训练集上准确率可以达到 75%,在测试集上达到了约 74% 的准确率:

Epoch: 100, Loss: 0.4896, Train Acc: 0.7599, Test Acc: 0.7485

3. 使用 GraphSAGE 进行节点分类

(1) 接下来,我们将训练 GraphSAGE 来对 Cora 数据集的节点进行分类。首先加载数据集:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import SAGEConv
from sklearn.model_selection import train_test_split
import numpy as np# Load Cora dataset
dataset = Planetoid(root='data/Planetoid', name='Cora')
data = dataset[0]

(2) 拆分数据集,使用 90% 的数据集作为训练集,剩余部分作为测试集:

nodes = np.arange(data.num_nodes)
train_nodes, test_nodes = train_test_split(nodes, train_size=0.1, test_size=None, stratify=data.y.numpy()
)data.train_mask = torch.zeros(data.num_nodes, dtype=torch.bool)
data.train_mask[train_nodes] = True
data.test_mask = torch.zeros(data.num_nodes, dtype=torch.bool)
data.test_mask[test_nodes] = True

(3) 创建模型。在本节中,使用一个三层的 GraphSAGE 编码器,分别为 323216 维度。然后,编码器将连接到一个具有 softmax 激活的全连接层来执行分类。使用学习率为 0.03Adam 优化器,并将损失函数设置为categorical_crossentropy

class GraphSAGE(nn.Module):def __init__(self, in_channels, hidden_channels, out_channels, num_layers, dropout):super(GraphSAGE, self).__init__()self.convs = nn.ModuleList()self.convs.append(SAGEConv(in_channels, hidden_channels))for _ in range(num_layers - 2):self.convs.append(SAGEConv(hidden_channels, hidden_channels))self.convs.append(SAGEConv(hidden_channels, out_channels))self.dropout = dropoutdef forward(self, x, edge_index):for i, conv in enumerate(self.convs[:-1]):x = conv(x, edge_index)x = F.relu(x)x = F.dropout(x, p=self.dropout, training=self.training)x = self.convs[-1](x, edge_index)return F.log_softmax(x, dim=-1)model = GraphSAGE(in_channels=dataset.num_features,hidden_channels=32,out_channels=dataset.num_classes,num_layers=3,dropout=0.6
)optimizer = torch.optim.Adam(model.parameters(), lr=0.003)
criterion = nn.NLLLoss()device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
data = data.to(device)

(4) 训练模型 20epoch

def train():model.train()optimizer.zero_grad()out = model(data.x, data.edge_index)loss = criterion(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()return loss.item()def test():model.eval()with torch.no_grad():out = model(data.x, data.edge_index)pred = out.argmax(dim=1)correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()return correct / int(data.test_mask.sum())# Training loop
for epoch in range(1, 21):loss = train()test_acc = test()print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Test Acc: {test_acc:.4f}')

训练过程输出如下所示,可以看到,模型在测试集上达到了约 80% 的准确率:

训练过程输出

http://www.dtcms.com/wzjs/349180.html

相关文章:

  • 做农业的公司管理网站专门做网站的公司
  • 拉米拉云网站建设优化营商环境发言材料
  • 舟山市规划建设局网站seo项目经理
  • 网站建设html模板百度pc端入口
  • 求个网站好人一生平安建设网站公司
  • 旅游交友的网站建设佛山网络公司 乐云seo
  • 网站测试方案在线搭建网站
  • 建设营销型网站多少钱百度一下搜索一下
  • 网站日志分析之后咋做自建网站平台有哪些
  • 做鸭服务的网站或群google浏览器网页版
  • jsp做网站案例自助建站免费建站平台
  • 外贸营销网站建设开鲁网站seo
  • 网站的html最新地址
  • 荷塘网站建设seo搜索引擎优化推荐
  • 2010年4月江苏省03340网站建设与管理答案东莞seo网站排名优化公司
  • 潍坊网站建设报价费用全国疫情高峰时间表最新
  • 广州建网站多少钱百度地图关键词优化
  • 做二手家电网站怎样搜索引擎seo推广
  • 建设政府网站的好处产品质量推广营销语
  • 深圳小蚁人网站建设免费seo网站
  • 昆山市住房和城乡建设网站网页制作教程步骤
  • 俄文网站建设百度地图网页版
  • 湖南建设厅官方网站搜狗网页
  • 网站上推广游戏怎么做国家免费培训网站
  • 网站建设现在什么服务器比较好网片
  • 彩票网站为啥链接做两次跳转营销型网站建设推广
  • ui设计行业的现状和发展前景青海网站seo
  • 江苏专业做网站的公司哪家好网络营销品牌推广公司
  • web前端网站开发相关书籍深圳seo优化服务商
  • 嘉兴建设教育网站培训中心网站百度小说排行榜前十