当前位置: 首页 > wzjs >正文

枣强网站建设代理百度搜索排行榜风云榜

枣强网站建设代理,百度搜索排行榜风云榜,手机做任务赚钱网站,公司做网站好不好01背包问题 经典的0 - 1背包问题的解决方案。 二维数组的版本 代码功能概述 0 - 1背包问题指的是有 n 个物品和一个容量为 m 的背包,每个物品有对应的体积 v[i] 和价值 w[i],需要从这些物品里挑选若干个放入背包,让背包内物品的总价值达到最…

01背包问题
经典的0 - 1背包问题的解决方案。


二维数组的版本

代码功能概述

0 - 1背包问题指的是有 n 个物品和一个容量为 m 的背包,每个物品有对应的体积 v[i] 和价值 w[i],需要从这些物品里挑选若干个放入背包,让背包内物品的总价值达到最大。每个物品仅能选择放入或者不放入背包(即0 - 1选择)。

代码详细解释

#include<bits/stdc++.h>
using namespace std;// 定义长整型别名
typedef long long LL;
// 定义数组的最大长度
const int N=1100;// f[i][j] 表示前 i 个物品,背包容量为 j 时的最大价值
int f[N][N];
// v[i] 表示第 i 个物品的体积,w[i] 表示第 i 个物品的价值
int v[N],w[N];int main(){// n 表示物品的数量,m 表示背包的容量int n,m;// 从标准输入读取物品数量和背包容量cin>>n>>m;// 循环读取每个物品的体积和价值for(int i = 1;i<=n;i++){cin>>v[i]>>w[i];}// 动态规划求解过程for(int i = 1;i <= n;i++){for(int j = 1;j <= m;j++){// 如果当前背包容量 j 小于第 i 个物品的体积 v[i],则不能放入第 i 个物品if(j < v[i])// 最大价值等于前 i - 1 个物品在容量 j 下的最大价值f[i][j] = f[i-1][j];else// 可以选择放入或不放入第 i 个物品,取两者中的最大值f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]);}}// 输出前 n 个物品,背包容量为 m 时的最大价值cout<<f[n][m];return 0;
}

代码核心逻辑

  • 状态定义f[i][j] 代表前 i 个物品,背包容量为 j 时所能获得的最大价值。
  • 状态转移
    • j < v[i],也就是当前背包容量不足以放入第 i 个物品,那么 f[i][j] = f[i - 1][j]
    • j >= v[i],则可以选择放入或者不放入第 i 个物品:
      • 不放入:f[i][j] = f[i - 1][j]
      • 放入:f[i][j] = f[i - 1][j - v[i]] + w[i]
    • 取这两种情况的最大值作为 f[i][j] 的值。
  • 最终结果f[n][m] 即为前 n 个物品,背包容量为 m 时的最大价值。

复杂度分析

  • 时间复杂度 O ( n m ) O(nm) O(nm),这里的 n 是物品的数量,m 是背包的容量。
  • 空间复杂度 O ( n m ) O(nm) O(nm),主要是用于存储状态数组 f

要将你的二维动态规划代码优化为一维数组,可以利用动态规划的状态转移只依赖于上一行的状态这一特性。通过从右到左更新一维数组,可以避免覆盖还未使用的状态,从而实现空间优化。


一维数组的版本

优化后的代码

#include <bits/stdc++.h>
using namespace std;const int N = 1100;int f[N]; // 一维动态规划数组,f[j] 表示凑出金额 j 所需的最大价值
int v[N], w[N]; // v[i] 表示第 i 个物品的体积,w[i] 表示第 i 个物品的价值int main() {int n, m;cin >> n >> m; // 输入物品数量 n 和背包容量 mfor (int i = 1; i <= n; i++) {cin >> v[i] >> w[i]; // 输入每个物品的体积和价值}// 初始化动态规划数组memset(f, 0, sizeof(f)); // 初始时,所有金额的最大价值为 0// 动态规划求解for (int i = 1; i <= n; i++) { // 遍历每个物品for (int j = m; j >= v[i]; j--) { // 从大到小遍历背包容量f[j] = max(f[j], f[j - v[i]] + w[i]); // 更新状态}}// 输出结果cout << f[m] << endl; // 输出凑出金额 m 的最大价值return 0;
}

代码解释

1. 一维数组的定义
  • 原代码使用二维数组 f[i][j] 表示前 i 个物品在背包容量为 j 时的最大价值。
  • 优化后,使用一维数组 f[j] 表示背包容量为 j 时的最大价值。
  • 因为状态转移只依赖于上一行的状态,所以可以用一维数组代替二维数组。
2. 从右到左更新
  • 在更新 f[j] 时,f[j - v[i]] 表示未选择当前物品时的状态。
  • 如果从左到右更新(如 for (int j = v[i]; j <= m; j++)),会导致 f[j - v[i]] 被当前物品更新过,从而出现重复选择当前物品的情况。
  • 因此,必须从右到左更新(如 for (int j = m; j >= v[i]; j--)),确保每个物品只被选择一次。
3. 状态转移方程
  • 状态转移方程保持不变:
    f [ j ] = max ⁡ ( f [ j ] , f [ j − v [ i ] ] + w [ i ] ) f[j] = \max(f[j], f[j - v[i]] + w[i]) f[j]=max(f[j],f[jv[i]]+w[i])
    • f[j] 表示不选择当前物品时的最大价值。
    • f[j - v[i]] + w[i] 表示选择当前物品时的最大价值。
4. 初始化
  • 初始化 f 数组为 0,表示在没有物品时,所有背包容量的最大价值都为 0。
5. 输出结果
  • 最终结果存储在 f[m] 中,表示背包容量为 m 时的最大价值。

复杂度分析

时间复杂度
  • 外层循环遍历物品数量 n n n,内层循环遍历背包容量 m m m
  • 时间复杂度为 O ( n × m ) O(n \times m) O(n×m)
空间复杂度
  • 使用了一维数组 f,空间复杂度为 O ( m ) O(m) O(m)

注意事项

  1. 从右到左更新的重要性

    • 如果改为从左到右更新(如 for (int j = v[i]; j <= m; j++)),会导致每个物品被多次选择,变成 完全背包问题 的解法。
    • 因此,在 0-1 背包问题 中,必须从右到左更新。
  2. 适用场景

    • 这段代码适用于 0-1 背包问题,即每个物品只能选择一次。
    • 如果是 完全背包问题(每个物品可以无限次选择),需要将状态转移方程改为 f[j] = max(f[j], f[j - v[i]] + w[i]),并且内层循环改为从左到右更新。

http://www.dtcms.com/wzjs/347026.html

相关文章:

  • node.js做网站好累站长之家
  • 求一个全部用div做的网站seo规则
  • 做网站那个平台企业宣传ppt
  • 空投注册送币网站怎么做新媒体
  • 大连建设网官网网上办公大厅宁波seo入门教程
  • 天津建站软件网址查询工具
  • 找哪里做网站东莞软文推广
  • 如何申请自己的网站新站seo快速排名 排名
  • 网站多久商品seo优化是什么意思
  • 做网站能挣多少钱广州建网站的公司
  • 建设网站广州巨量数据官网
  • 怎么让客户做网站网站优化推广排名
  • 什么是php动态网站开发小广告清理
  • 2018网站做外链厦门网站搜索引擎优化
  • 维力安网站建设公司谷歌关键词
  • 怎么做frontpage网站今日头条seo
  • 广州外贸网站推广如何推广宣传一个品牌
  • 济南高端网站设计日本樱花免m38vcom费vps
  • 福田做棋牌网站建设多少钱百度知道电脑版网页入口
  • 网站普查建设背景怎么自己制作网站
  • 国外游戏ui设计网站河南郑州最新消息今天
  • 医院网站前置审批深圳优化公司
  • 有哪些做场景秀的网站可以商用的电视app永久软件
  • 厦门网站排名营销推广网站
  • 茂名网站建设技术托管seo 工具
  • ink域名网站如何做网站优化seo
  • 免费b站推广网站入口2020360竞价推广怎么做
  • seo营销推广平台百度seo搜索营销新视角
  • wordpress建站怎么样seo软文推广工具
  • 国家建设公债拍卖网站电商网站建设制作