当前位置: 首页 > wzjs >正文

受欢迎的医疗网站建设北京百度seo工作室

受欢迎的医疗网站建设,北京百度seo工作室,深圳网络推广服务是什么,1688网站建设与维护这段代码的目的是计算给定整数数组的所有全排列(permutations),并返回一个包含所有排列的二维数组。 思路解析 在这段代码中,采用了 深度优先搜索(DFS) 和 回溯 的方法来生成所有的排列。 关键步骤&#xf…

这段代码的目的是计算给定整数数组的所有全排列(permutations),并返回一个包含所有排列的二维数组。

思路解析

在这段代码中,采用了 深度优先搜索(DFS)回溯 的方法来生成所有的排列。

关键步骤:

1. 回溯:我们通过交换数组中的元素,将数组的每个元素依次放置到每个位置,生成所有的排列组合。

2. 递归:每次递归处理当前索引位置的元素,继续处理下一个位置,直到递归到数组的末尾,表示完成一个排列。

3. 交换回溯:在每次递归后,通过交换操作还原数组的顺序,避免对后续递归产生影响。

代码解析


class Solution {public:vector<vector<int>> ans;  // 用于存储所有的排列vector<vector<int>> permute(vector<int>& nums) {dfs(nums, 0);  // 从数组的第一个位置开始深度优先搜索return ans;  // 返回所有的排列}void dfs(vector<int>& nums, int n) {// 如果当前的索引等于数组的长度,说明已经形成了一个排列if (n == nums.size()) {ans.push_back(nums);  // 将当前排列加入结果集中return;}// 遍历当前索引位置后的所有元素for (int i = n; i < nums.size(); i++) {swap(nums[i], nums[n]);  // 将第 i 个元素与第 n 个元素交换dfs(nums, n + 1);  // 递归处理下一个位置swap(nums[i], nums[n]);  // 交换回去,恢复原数组状态(回溯)}}};

详细注释

1. vector<vector<int>> ans;:

• 用于存储所有的排列组合。

2. vector<vector<int>> permute(vector<int>& nums):

• permute 是主函数,接受一个整数数组 nums 作为输入,返回一个包含所有排列的二维数组。

• dfs(nums, 0) 从 nums 的第 0 个位置开始深度优先搜索。

3. void dfs(vector<int>& nums, int n):

• dfs 是深度优先搜索的核心函数,负责递归生成排列。

• nums 是待排列的数组,n 是当前递归处理的索引位置。

4. if (n == nums.size()):

• 如果当前的索引 n 等于数组的大小,说明已经将所有元素排列完毕,形成了一个有效的排列。

• ans.push_back(nums) 将当前的排列(即 nums 数组的状态)加入结果集 ans。

5. for (int i = n; i < nums.size(); i++):

• 遍历当前索引 n 之后的每一个元素,通过交换生成不同的排列。

6. swap(nums[i], nums[n]);:

• 交换 nums[i] 和 nums[n],将 nums[i] 放到当前的位置 n。这样可以生成一个新的排列组合。

7. dfs(nums, n + 1):

• 递归调用 dfs,将处理下一个位置的元素。即当前元素已放置好,继续处理下一个索引。

8. swap(nums[i], nums[n]);:

• 交换回去,恢复原数组状态,这样可以进行下一轮的排列生成(即回溯)。这是为了确保后续的排列生成不会受到之前交换的影响。

好的,接下来我会详细地继续补充并完成整个 深度优先搜索(DFS)回溯 的运行步骤,直到所有排列都生成完毕。

输入数组:

nums = [1, 2, 3]

运行步骤:

我们通过 DFS 和回溯的方法生成 nums 数组的所有排列。

初始状态:

• 输入:nums = [1, 2, 3]

• ans = [](最终存储所有排列的结果)

第 1 层递归:n = 0 (处理第一个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 0,遍历 i = 0 到 i = 2。

1. 第 1 次交换:swap(nums[0], nums[0]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [1, 2, 3] 加入到 ans 中。

• ans = [[1, 2, 3]]

回溯:恢复状态

• 交换回去,恢复原数组 [1, 2, 3]。

• 返回到 n = 1,继续处理 i = 2。

2. 第 2 次交换:swap(nums[1], nums[2]),数组变为 [1, 3, 2]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [1, 3, 2],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [1, 3, 2]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [1, 3, 2] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2]]

回溯:恢复状态

• 交换回去,恢复原数组 [1, 3, 2]。

• 返回到 n = 1,恢复原数组 [1, 2, 3]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

第 2 次交换:n = 0 (处理第一个位置)

3. 第 2 次交换:swap(nums[0], nums[1]),数组变为 [2, 1, 3]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [2, 1, 3],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [2, 1, 3]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [2, 1, 3],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [2, 1, 3]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [2, 1, 3] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3]]

回溯:恢复状态

• 交换回去,恢复原数组 [2, 1, 3]。

• 返回到 n = 2,继续处理 i = 2。

2. 第 2 次交换:swap(nums[1], nums[2]),数组变为 [2, 3, 1]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [2, 3, 1],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [2, 3, 1]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [2, 3, 1] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]]

回溯:恢复状态

• 交换回去,恢复原数组 [2, 3, 1]。

• 返回到 n = 1,恢复原数组 [2, 1, 3]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

第 3 次交换:n = 0 (处理第一个位置)

4. 第 3 次交换:swap(nums[0], nums[2]),数组变为 [3, 2, 1]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [3, 2, 1],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [3, 2, 1]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [3, 2, 1],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [3, 2, 1]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [3, 2, 1] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1]]

回溯:恢复状态

• 交换回去,恢复原数组 [3, 2, 1]。

• 返回到 n = 2,恢复原数组 [3, 2, 1]。

• 返回到 n = 1,恢复原数组 [3, 2, 1]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

最终结果

最终生成的排列 ans 中包含了所有可能的排列:

ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]

总结

1. DFS 遍历:通过递归逐个处理每个位置,生成所有可能的字符组合。

2. 回溯:通过交换和恢复数组状态,确保生成所有排列。

3. 最终生成了所有的排列,并存储在 ans 中。

这样,我们使用回溯和 DFS 的方法成功计算出了所有的排列,并保存在 ans 数组中。

http://www.dtcms.com/wzjs/346720.html

相关文章:

  • 网站流量如何赚钱国外搜索引擎有哪些
  • 开放端口做网站怎样做线上销售
  • 宜宾市建设工程质量监督站网站电商网站排名
  • 网站建设定制公众号小程序百度网登录入口
  • 毕业设计软件开发网站开发专业郑州企业网站建设
  • 电商网站建设合同模板seo是什么部门
  • 海尔网站建设情况国内最新新闻事件
  • 观澜小学网站建设营销方案ppt
  • 淘宝网站建设费用网站关键词排名优化电话
  • 时时彩网站制作seo怎么优化效果更好
  • 成都 广告公司网站建设免费开发网站
  • 做一组静态页面网站多少钱百度关键词搜索量排行
  • 百度给做的网站如何登陆网站后台北京seo公司排名
  • 涿州住房和城乡建设局网站业务员用什么软件找客户
  • 什么网站管理系统好搜索关键词排名
  • 网站建设 010网络营销推广公司
  • 手机端网站怎么做企业网站模板下载
  • 西安旅游网站建设优化大师win10下载
  • 运城网站建设价格百度下载安装
  • 深圳网站建设网络西安关键词优化软件
  • 网站图解图片是用什么软件做的热门关键词排名查询
  • 如何提升做网站的效率怎么进入百度推广账户
  • 浅谈网站规划建设与管理维护百度一下就知道百度首页
  • 建设银行香港分行网站企业宣传推广怎么做
  • 只做app不做网站可以吗竞价托管收费标准
  • 游戏网站开发找什么人可建深圳百度seo哪家好
  • html5网站修改电商代运营十大公司排名
  • 北京网站优化校学费厦门网站优化公司
  • 做的网站每年都要交费吗成都网络推广中联无限
  • python毕业设计做网站百度热搜榜排名今日头条