app网站建设教程视频没经验可以做电商运营吗
DM层 数据集市层 (Data Mart)
粒度上卷(Roll-up):
指的是沿着维度层次向上聚合汇总数据,从细粒度到粗粒度观察数据的操作。
示例
数仓的上一层DWS的是按日汇总
DM层基于DWS层主题日宽表上卷统计出按年,月,周的数据 >>用DWS层的宽表连接DWD层的时间维度表
创建DM层 : 建数据库>>建表
CREATE DATABASE if NOT EXISTS DM;
建表: 表结构和DWS层的表结构几乎一致, 只多了关于日期的维度字段
建表sql
CREATE TABLE dm.dm_sale(date_time string COMMENT '统计日期,不能用来分组统计' ,--记录哪一天干活time_type string COMMENT '统计时间维度:year、month、week、date(就是天day)',year_code string COMMENT '年code',year_month string COMMENT '年月',month_code string COMMENT '月份编码', day_month_num string COMMENT '一月第几天', dim_date_id string COMMENT '日期',year_week_name_cn string COMMENT '年中第几周',group_type string COMMENT '分组类型:store,trade_area,city,brand,min_class,mid_class,max_class,all',city_id string COMMENT '城市id',city_name string COMMENT '城市name',trade_area_id string COMMENT '商圈id',trade_area_name string COMMENT '商圈名称',store_id string COMMENT '店铺的id',store_name string COMMENT '店铺名称',brand_id string COMMENT '品牌id',brand_name string COMMENT '品牌名称',max_class_id string COMMENT '商品大类id',max_class_name string COMMENT '大类名称',mid_class_id string COMMENT '中类id', mid_class_name string COMMENT '中类名称',min_class_id string COMMENT '小类id', min_class_name string COMMENT '小类名称',-- =======统计=======sale_amt DECIMAL(38,2) COMMENT '销售收入',plat_amt DECIMAL(38,2) COMMENT '平台收入',deliver_sale_amt DECIMAL(38,2) COMMENT '配送成交额',mini_app_sale_amt DECIMAL(38,2) COMMENT '小程序成交额',android_sale_amt DECIMAL(38,2) COMMENT '安卓APP成交额',ios_sale_amt DECIMAL(38,2) COMMENT '苹果APP成交额',pcweb_sale_amt DECIMAL(38,2) COMMENT 'PC商城成交额',order_cnt BIGINT COMMENT '成交单量',eva_order_cnt BIGINT COMMENT '参评单量comment=>cmt',bad_eva_order_cnt BIGINT COMMENT '差评单量negtive-comment=>ncmt',deliver_order_cnt BIGINT COMMENT '配送单量',refund_order_cnt BIGINT COMMENT '退款单量',miniapp_order_cnt BIGINT COMMENT '小程序成交单量',android_order_cnt BIGINT COMMENT '安卓APP订单量',ios_order_cnt BIGINT COMMENT '苹果APP订单量',pcweb_order_cnt BIGINT COMMENT 'PC商城成交单量'
)
COMMENT '销售主题宽表'
ROW format delimited fields terminated BY '\t'
stored AS orc tblproperties ('orc.compress' = 'SNAPPY');
插入数据sql
WITH TEMP AS (SELECTD.year_code,D.year_month,D.month_code,D.day_month_num,D.dim_date_id,D.year_week_name_cn,city_id, city_name, trade_area_id, trade_area_name, store_id, store_name, brand_id, brand_name, max_class_id, max_class_name, mid_class_id, mid_class_name, min_class_id, min_class_name, sale_amt, plat_amt, deliver_sale_amt, mini_app_sale_amt, android_sale_amt, ios_sale_amt, pcweb_sale_amt, order_cnt, eva_order_cnt, bad_eva_order_cnt, deliver_order_cnt, refund_order_cnt, miniapp_order_cnt, android_order_cnt, ios_order_cnt, pcweb_order_cnt, dtFROM DWS.DWS_SALE_DAYCOUNT SINNER JOIN DWD.DIM_DATE DON S.dt = D.date_code
)
INSERT overwrite table dm.dm_sale
SELECTCURRENT_DATE AS DATE_TIME,CASEWHEN dim_date_id IS NOT NULL THEN 'DATE'WHEN year_week_name_cn IS NOT NULL THEN 'WEEK'WHEN month_code IS NOT NULL THEN 'MONTH'WHEN year_code IS NOT NULL THEN 'YEAR'END AS TIME_TYPE,year_code,year_month,month_code,day_month_num,dim_date_id,year_week_name_cn,CASEWHEN T.store_id IS NOT NULL THEN '店铺'WHEN T.trade_area_id IS NOT NULL THEN '商圈'WHEN T.city_id IS NOT NULL THEN '城市'WHEN T.min_class_id IS NOT NULL THEN '小类'WHEN T.mid_class_id IS NOT NULL THEN '中类'WHEN T.max_class_id IS NOT NULL THEN '大类'WHEN T.brand_id IS NOT NULL THEN '品牌'ELSE '日期'END AS GROUP_TYPE,city_id,city_name,trade_area_ID,trade_area_name,store_id,store_name,brand_id,brand_name,max_class_id,max_class_name,mid_class_id,mid_class_name,min_class_id,min_class_name,SUM(sale_amt),SUM(plat_amt),SUM(deliver_sale_amt),SUM(mini_app_sale_amt),SUM(android_sale_amt),SUM(ios_sale_amt),SUM(pcweb_sale_amt),SUM(order_cnt),SUM(eva_order_cnt),SUM(bad_eva_order_cnt),SUM(deliver_order_cnt),SUM(refund_order_cnt),SUM(miniapp_order_cnt),SUM(android_order_cnt),SUM(ios_order_cnt),SUM(pcweb_order_cnt)
FROM TEMP T
GROUP BY-- 所有 GROUPING SETS 中出现的列都要包含在 GROUP BY 中day_month_num,dim_date_id,city_id, city_name, trade_area_id, trade_area_name, store_id, store_name, brand_id, brand_name, max_class_id, max_class_name, mid_class_id, mid_class_name, min_class_id, min_class_name,year_code,year_month,month_code,year_week_name_cn
GROUPING SETS ((day_month_num, dim_date_id),(day_month_num, dim_date_id, city_id, city_name),(day_month_num, dim_date_id, city_id, city_name, trade_area_id, trade_area_name),(day_month_num, dim_date_id, city_id, city_name, trade_area_id, trade_area_name, store_id, store_name),(day_month_num, dim_date_id, brand_id, brand_name),(day_month_num, dim_date_id, max_class_id, max_class_name),(day_month_num, dim_date_id, max_class_id, max_class_name, mid_class_name, mid_class_id),(day_month_num, dim_date_id, max_class_id, max_class_name, mid_class_name, mid_class_id, min_class_id, min_class_name),(year_week_name_cn),(year_week_name_cn, city_id, city_name),(year_week_name_cn, city_id, city_name, trade_area_id, trade_area_name),(year_week_name_cn, city_id, city_name, trade_area_id, trade_area_name, store_id, store_name),(year_week_name_cn, brand_id, brand_name),(year_week_name_cn, max_class_id, max_class_name),(year_week_name_cn, max_class_id, max_class_name, mid_class_name, mid_class_id),(year_week_name_cn, max_class_id, max_class_name, mid_class_name, mid_class_id, min_class_id, min_class_name),(year_month, month_code),(year_month, month_code, city_id, city_name),(year_month, month_code, city_id, city_name, trade_area_id, trade_area_name),(year_month, month_code, city_id, city_name, trade_area_id, trade_area_name, store_id, store_name),(year_month, month_code, brand_id, brand_name),(year_month, month_code, max_class_id, max_class_name),(year_month, month_code, max_class_id, max_class_name, mid_class_name, mid_class_id),(year_month, month_code, max_class_id, max_class_name, mid_class_name, mid_class_id, min_class_id, min_class_name),(year_code),(year_code, city_id, city_name),(year_code, city_id, city_name, trade_area_id, trade_area_name),(year_code, city_id, city_name, trade_area_id, trade_area_name, store_id, store_name),(year_code, brand_id, brand_name),(year_code, max_class_id, max_class_name),(year_code, max_class_id, max_class_name, mid_class_name, mid_class_id),(year_code, max_class_id, max_class_name, mid_class_name, mid_class_id, min_class_id, min_class_name)
);
插入sql分析
查询DWS层的宽表>>确认连接字段dt的数据格式
查询时间维度表>>找到和DWS层的宽表的连接字段数据格式一样的字段>>查找新维度的相应字段
select * from DWD.DIM_DATE
在with as临时表里面把用DWS层的宽表连接DWD层的时间维度表, 内连接,连接字段dt(日)
在临时表查询语句中把目标表新增的时间维度的字段添加进去
目标表
临时表
INSERT overwrite table dm.dm_sale 是hive中全量插入的语法
在查询语句中把目标表新增的列实现
group_type string COMMENT '分组类型:store,trade_area,city,brand,min_class,mid_class,max_class,all',
枚举类型>>case when
group by 分组后面跟除了指标字段及 group_type 的所有字段(维度字段)
用grouping sets 写出需要的维度组合