当前位置: 首页 > wzjs >正文

网站建设需要具备哪些知识重庆网站制作

网站建设需要具备哪些知识,重庆网站制作,长沙做网站街,icp备案查询站长工具前缀和(Prefix Sum)是一种用于高效计算数组区间和的预处理技术,尤其适用于需要频繁查询子数组或子矩阵和的场景。下面详细讲解一维前缀和与二维前缀和的原理、构建方法及应用。 一、一维前缀和 1. 定义 前缀和数组 prefix 的每个元素 prefi…

前缀和(Prefix Sum)是一种用于高效计算数组区间和的预处理技术,尤其适用于需要频繁查询子数组或子矩阵和的场景。下面详细讲解一维前缀和与二维前缀和的原理、构建方法及应用。


一、一维前缀和

1. 定义
  • 前缀和数组 prefix 的每个元素 prefix[i] 表示原数组 arri 个元素的和(通常从 arr[0]arr[i-1])。
  • 例如,原数组 arr = [1, 2, 3, 4],前缀和数组为 prefix = [0, 1, 3, 6, 10]
2. 构建方法
  • 初始化 prefix[0] = 0
  • 递推公式:
    [
    \text{prefix}[i] = \text{prefix}[i-1] + \text{arr}[i-1]
    ]
  • 代码实现
    vector<int> buildPrefix(vector<int>& arr) {int n = arr.size();vector<int> prefix(n + 1, 0);for (int i = 1; i <= n; i++) {prefix[i] = prefix[i - 1] + arr[i - 1];}return prefix;
    }
    
3. 查询区间和
  • 查询区间 [L, R] 的和(左闭右闭区间):
    [
    \text{sum}(L, R) = \text{prefix}[R+1] - \text{prefix}[L]
    ]
  • 示例
    arr = [1, 2, 3, 4],求 [1, 2] 的和:
    [
    \text{sum}(1, 2) = \text{prefix}[3] - \text{prefix}[1] = 6 - 1 = 5
    ]
4. 应用场景
  • 快速计算子数组的和(时间复杂度 O(1))。
  • 解决滑动窗口问题(如和大于等于目标值的最短子数组)。

二、二维前缀和

1. 定义
  • 二维前缀和数组 prefix 的每个元素 prefix[i][j] 表示从矩阵左上角 (0,0) 到右下角 (i-1,j-1) 的子矩阵的和。
  • 例如,矩阵 matrix = [[1,2],[3,4]],前缀和数组为:
    [
    \text{prefix} = \begin{bmatrix}
    0 & 0 & 0 \
    0 & 1 & 3 \
    0 & 4 & 10 \
    \end{bmatrix}
    ]
2. 构建方法
  • 初始化 prefix[0][0] = 0
  • 递推公式:
    [
    \text{prefix}[i][j] = \text{prefix}[i-1][j] + \text{prefix}[i][j-1] - \text{prefix}[i-1][j-1] + \text{matrix}[i-1][j-1]
    ]
  • 代码实现
    vector<vector<int>> build2DPrefix(vector<vector<int>>& matrix) {int m = matrix.size();int n = matrix[0].size();vector<vector<int>> prefix(m + 1, vector<int>(n + 1, 0));for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {prefix[i][j] = prefix[i-1][j] + prefix[i][j-1] - prefix[i-1][j-1] + matrix[i-1][j-1];}}return prefix;
    }
    
3. 查询子矩阵和
  • 查询子矩阵 (x1, y1)(x2, y2) 的和(左闭右闭区间):
    [
    \text{sum}(x1, y1, x2, y2) = \text{prefix}[x2+1][y2+1] - \text{prefix}[x1][y2+1] - \text{prefix}[x2+1][y1] + \text{prefix}[x1][y1]
    ]
  • 示例
    matrix = [[1,2,3],[4,5,6],[7,8,9]],求子矩阵 (1,1)(2,2) 的和:
    [
    \text{sum} = 5 + 6 + 8 + 9 = 28 \
    \text{通过前缀和计算:} \text{prefix}[3][3] - \text{prefix}[1][3] - \text{prefix}[3][1] + \text{prefix}[1][1] = 45 - 6 - 12 + 1 = 28
    ]
4. 应用场景
  • 快速计算子矩阵的和(时间复杂度 O(1))。
  • 图像处理中的区域像素和统计。
  • 动态规划中的矩阵路径问题。

三、对比总结

特性一维前缀和二维前缀和
数据结构一维数组二维数组
构建复杂度O(n)O(mn)
查询复杂度O(1)O(1)
核心公式prefix[i] = prefix[i-1] + arr[i-1]prefix[i][j] = ...(见上文)
应用问题子数组和、滑动窗口子矩阵和、图像处理、动态规划

四、经典例题

  1. 一维前缀和

    • LeetCode 303. 区域和检索 - 数组不可变
    • LeetCode 560. 和为 K 的子数组
  2. 二维前缀和

    • LeetCode 304. 二维区域和检索 - 矩阵不可变
    • LeetCode 1292. 元素和小于等于阈值的正方形的最大边长

通过掌握前缀和和二维前缀和的原理与实现,可以高效解决许多与区间和相关的算法问题。

http://www.dtcms.com/wzjs/333037.html

相关文章:

  • 天河网站建设公司房地产新闻最新消息
  • 网站建设 中企动力公司湖南网站定制
  • 武汉网站代运营网店运营培训哪里好
  • 有没专门做二手的家具网站找竞价托管公司
  • 建站知识免费推广产品平台有哪些
  • 深圳建设厅网站首页百度网站首页入口
  • 苏州网站seo公司营销对企业的重要性
  • 公司网站制作范文seo快速排名百度首页
  • cad室内设计排名优化软件点击
  • 营销型网站建设案例分析网站域名在哪里查询
  • 平面设计师资格证怎么考seo网络培训班
  • 广州建站服务网店seo名词解释
  • 做的网站浏览的越多越挣钱电商网
  • b2b电子商务网站调研报告word文档形式友情链接适用网站
  • 做购物网站学什么技术sem搜索
  • 男女激烈做羞羞事网站大连网站排名推广
  • 苏州高新区住建局官网淘宝seo优化
  • 网站设计有哪些专业术语台州seo网站排名优化
  • 三只松鼠营销案例分析广州seo公司如何
  • 企业网站建设应注意什么东莞网络排名优化
  • 昆明企业网站建设公司批量关键词排名查询工具
  • 网站开发软件要求湘潭seo公司
  • 电器网站建设怎么建公司网站
  • php网站开发意思网站页面的优化
  • 做视频网站的公司2022网站seo
  • 电商网站构建网络营销公司哪家可靠
  • 自己做网站多少钱被忽悠去做网销了
  • asp网站和php网站电子商务推广
  • 谁有wap网站优化大师如何删掉多余的学生
  • 龙华民治网站设计公司河北seo平台