当前位置: 首页 > wzjs >正文

建设网站需要提供什么资料广州优化防控措施

建设网站需要提供什么资料,广州优化防控措施,临淄做网站,网站建设ssc源码修复YOLO11 1.YOLO11网络结构图在哪里?2.对应的网络结构图3.每一个模块详解3.1 Conv模块3.2关于卷积模块3.3 关于给各个模块指定参数的细节 4.加入CBAM 1.YOLO11网络结构图在哪里? 2.对应的网络结构图 3.每一个模块详解 3.1 Conv模块 位置:ultr…

YOLO11

    • 1.YOLO11网络结构图在哪里?
    • 2.对应的网络结构图
    • 3.每一个模块详解
      • 3.1 Conv模块
      • 3.2关于卷积模块
      • 3.3 关于给各个模块指定参数的细节
    • 4.加入CBAM

1.YOLO11网络结构图在哪里?

在这里插入图片描述

2.对应的网络结构图

在这里插入图片描述

3.每一个模块详解

3.1 Conv模块

位置:ultralytics/nn/modules/conv.py
在这里插入图片描述
特点:YOLO11代码更加模块化以及简洁化

3.2关于卷积模块

在这里插入图片描述

3.3 关于给各个模块指定参数的细节

回到yolo11.yaml文件,我们只是绘制了对应的网络模块,而没有管后面的参数信息,这明显是不够的,后期我们进行模型改进,也是要注意这个的,不是随心所欲。
在这里插入图片描述
在这里插入图片描述`def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
“”“Parse a YOLO model.yaml dictionary into a PyTorch model.”“”
import ast

# Args
legacy = True  # backward compatibility for v3/v5/v8/v9 models
max_channels = float("inf")
nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
if scales:scale = d.get("scale")if not scale:scale = tuple(scales.keys())[0]LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")depth, width, max_channels = scales[scale]if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()if verbose:LOGGER.info(f"{colorstr('activation:')} {act}")  # printif verbose:LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
ch = [ch]
layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, argsm = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m]  # get modulefor j, a in enumerate(args):if isinstance(a, str):try:args[j] = locals()[a] if a in locals() else ast.literal_eval(a)except ValueError:passn = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gainif m in {Classify,Conv,ConvTranspose,GhostConv,Bottleneck,GhostBottleneck,SPP,SPPF,C2fPSA,C2PSA,DWConv,Focus,BottleneckCSP,C1,C2,C2f,C3k2,RepNCSPELAN4,ELAN1,ADown,AConv,SPPELAN,C2fAttn,C3,C3TR,C3Ghost,nn.ConvTranspose2d,DWConvTranspose2d,C3x,RepC3,PSA,SCDown,C2fCIB,}:c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)if m is C2fAttn:args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channelsargs[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2])  # num headsargs = [c1, c2, *args[1:]]if m in {BottleneckCSP,C1,C2,C2f,C3k2,C2fAttn,C3,C3TR,C3Ghost,C3x,RepC3,C2fPSA,C2fCIB,C2PSA,}:args.insert(2, n)  # number of repeatsn = 1if m is C3k2:  # for M/L/X sizeslegacy = Falseif scale in "mlx":args[3] = Trueelif m is AIFI:args = [ch[f], *args]elif m in {HGStem, HGBlock}:c1, cm, c2 = ch[f], args[0], args[1]args = [c1, cm, c2, *args[2:]]if m is HGBlock:args.insert(4, n)  # number of repeatsn = 1elif m is ResNetLayer:c2 = args[1] if args[3] else args[1] * 4elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m in {Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn, v10Detect}:args.append([ch[x] for x in f])if m is Segment:args[2] = make_divisible(min(args[2], max_channels) * width, 8)if m in {Detect, Segment, Pose, OBB}:m.legacy = legacyelif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1args.insert(1, [ch[x] for x in f])elif m is CBLinear:c2 = args[0]c1 = ch[f]args = [c1, c2, *args[1:]]elif m is CBFuse:c2 = ch[f[-1]]else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace("__main__.", "")  # module typem_.np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, typeif verbose:LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m_.np:10.0f}  {t:<45}{str(args):<30}")  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)
return nn.Sequential(*layers), sorted(save)`

改进一定要修改此处代码

4.加入CBAM

由于本身就有CBAM的代码
所以只需要在yaml中加入即可

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, CBAM, []]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, CBAM, []]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [-1, 1, CBAM, []]- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

修改配置文件
在这里插入图片描述结果图
在这里插入图片描述

http://www.dtcms.com/wzjs/328201.html

相关文章:

  • 用flask做的网站有哪些小程序推广赚佣金平台
  • 培训学校类网站建设方案百度首页广告
  • 品牌网站定制开发站长工具seo优化系统
  • 毕业设计做网站的步骤免费seo在线工具
  • 做网站这么做合肥seo按天收费
  • 北京网站建设设计上海seo优化公司bwyseo
  • 郑州新闻最新消息今天关键词排名优化软件价格
  • 万网解压缩wordpress搜索引擎优化是什么意思
  • dede做漫画网站的案例seo优化推广技巧
  • 开发一个软件的流程做排名优化
  • 网站制作的核心技术一般网站推广要多少钱
  • 外管局网站收汇如何做延期灯塔seo
  • 吕子乔做网站一段台词360优化大师下载安装
  • 怎么做免费的网站b2b免费发布网站大全
  • 网站页面布局产品推广方式都有哪些
  • 做外贸有什么免费网站成都网站建设团队
  • 网站建设三方合同范本搜索引擎入口官网
  • 学院网站建设策划书seo长尾关键词优化
  • 想换掉做网站的公司河南网站公司
  • 凡科网怎么制作小程序宁波品牌网站推广优化
  • 个人网站 推荐抖音关键词优化
  • 做网站和做网页优化设计四年级上册语文答案
  • 房地产网站建设意义谷歌官网下载
  • 做竞赛的平台或网站免费男女打扑克的软件
  • 信阳网站网站建设东莞疫情最新消息今天新增
  • 下沙做网站的公司专门做排名的软件
  • 做网站链接怎么做腾讯企点
  • 网站建设开发html国内seo工具
  • 搞基怎么做视频网站seo排名软件哪个好用
  • 网站建设技术教程搜狗seo快速排名公司