当前位置: 首页 > wzjs >正文

微网站购物网站网址大全网站

微网站购物网站,网址大全网站,企业官网设计尺寸,知名网站建设1. Callback 功能介绍 Callback 是 LangChain 提供的回调机制,允许我们在 LLM 应用程序的各个阶段使用 hook (钩子)。钩子的含义也非常简单,我们把应用程序看成一个一个的处理逻辑,从开始到结束,钩子就是在…

1. Callback 功能介绍

Callback 是 LangChain 提供的回调机制,允许我们在 LLM 应用程序的各个阶段使用 hook (钩子)。钩子的含义也非常简单,我们把应用程序看成一个一个的处理逻辑,从开始到结束,钩子就是在事件传送到终点前截获并监控事件的传输。
在这里插入图片描述

Callback 对于记录日志、监控、流式传输等任务非常有用,简单理解, Callback 就是记录整个流程的运行情况的一个组件,在每个关键的节点记录响应的信息以便跟踪整个应用的运行情况。
例如:

  1. 在 Agent 模块中调用了几次 tool,每次的返回值是什么?
  2. 在 LLM 模块的执行输出是什么样的,是否有报错?
  3. 在 OutputParser 模块的输出解析是什么样的,重试了几次?
    Callback 收集到的信息可以直接输出到控制台,也可以输出到文件,更可以输入到第三方应用,相当于独立的日志管理系统,通过这些日志就可以分析应用的运行情况,统计异常率,运行的瓶颈模块以便优化。在 LangChain 中,callback 模块中具体实现包括两大功能,对应 CallbackHandler 和CallbackManager 。
  4. CallbackHandler:对每个应用场景比如 Agent 或 Chain 或 Tool 的纪录。
  5. CallbackManager:对所有 CallbackHandler 的封装和管理,包括了单个场景的 Handle,也包括运行时整条链路的 Handle。不过在 LangChain 的底层,这些任务的执行逻辑由回调处理器( CallbackHandler )定义。
    CallbackHandler 里的各个钩子函数的触发时间如下:
    以下是 LangChain Callback 事件机制中常见的事件及其对应的触发时机和方法名称的完整表格,适用于实现自定义的 CallbackHandler

事件名称事件触发时机相关方法(Callback 方法名)
Chat Model Start当聊天模型(如 ChatOpenAI)开始执行时on_chat_model_start
LLM Start当大语言模型(如 OpenAI、Anthropic)开始执行时on_llm_start
LLM New Token当 LLM 生成新 token(流式输出)时on_llm_new_token
LLM End当 LLM 执行结束时on_llm_end
LLM Error当 LLM 执行出错时on_llm_error
Chain Start当整个链(Chain)开始运行时on_chain_start
Chain End当整个链运行结束时on_chain_end
Chain Error当链运行出错时on_chain_error
Tool Start当工具(Tool)开始执行时on_tool_start
Tool End当工具执行结束时on_tool_end
Tool Error当工具执行出错时on_tool_error
Agent Action当 Agent 执行某个动作(如调用工具)时on_agent_action
Agent Finish当 Agent 执行完毕(完成任务)时on_agent_finish
Retriever Start当 Retriever(检索器)开始工作时on_retriever_start
Retriever End当 Retriever 检索结束时on_retriever_end
Retriever Error当 Retriever 出错时on_retriever_error
Text任意文本输出事件(用于自定义链、Tool、Agent 的输出)on_text
Retry当某个组件(如 LLM、Tool)触发重试机制时on_retry

在 LangChain 中使用回调,使用 CallbackHandler 几种方式:

  1. 在运行 invoke 时传递对应的 config 信息配置 callbacks(推荐)。
  2. 在 Chain 上调用 with_config 函数,传递对应的 config 并配置 callbacks(推荐)。
  3. 在构建大语言模型时,传递 callbacks 参数(不推荐)。
    在 LangChain 中提供了两个最基础的 CallbackHandler,分别是: StdOutCallbackHandler 和
    FileCallbackHandler 。
    使用示例如下:
import dotenv
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
dotenv.load_dotenv()
# 1.编排prompt
prompt = ChatPromptTemplate.from_template("{query}")
# 2.创建大语言模型
llm = ChatOpenAI(model="gpt-3.5-turbo-16k")
# 3.构建链
chain = {"query": RunnablePassthrough()} | prompt | llm | StrOutputParser()
# 4.调用链并执行
content = chain.stream( "你好,你是?", config={"callbacks": [StdOutCallbackHandler()]}
)
for chunk in content: pass

自定义回调

在 LangChain 中,想创建自定义回调处理器,只需继承 BaseCallbackHandler 并实现内部的部分接口即可,例如:

#!/usr/bin/env python
# -*- coding: utf-8 -*-import time
from typing import Dict, Any, List, Optional
from uuid import UUIDimport dotenv
from langchain_core.callbacks import StdOutCallbackHandler, BaseCallbackHandler
from langchain_core.messages import BaseMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.outputs import LLMResult
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAIdotenv.load_dotenv()class LLMOpsCallbackHandler(BaseCallbackHandler):"""自定义LLMOps回调处理器"""start_at: float = 0def on_chat_model_start(self,serialized: Dict[str, Any],messages: List[List[BaseMessage]],*,run_id: UUID,parent_run_id: Optional[UUID] = None,tags: Optional[List[str]] = None,metadata: Optional[Dict[str, Any]] = None,**kwargs: Any,) -> Any:print("聊天模型开始执行了")print("serialized:", serialized)print("messages:", messages)self.start_at = time.time()def on_llm_end(self,response: LLMResult,*,run_id: UUID,parent_run_id: Optional[UUID] = None,**kwargs: Any,) -> Any:end_at: float = time.time()print("完整输出:", response)print("程序消耗:", end_at - self.start_at)# 1.编排prompt
prompt = ChatPromptTemplate.from_template("{query}")# 2.创建大语言模型
llm = ChatOpenAI(model="gpt-3.5-turbo-16k")# 3.构建链
chain = {"query": RunnablePassthrough()} | prompt | llm | StrOutputParser()# 4.调用链并执行
resp = chain.stream("你好,你是?",config={"callbacks": [StdOutCallbackHandler(), LLMOpsCallbackHandler()]}
)for chunk in resp:pass
http://www.dtcms.com/wzjs/323451.html

相关文章:

  • 舟山网站建设代理自己搜20条优化措施
  • 建设网站教程视频视频下载百度点击排名收费软件
  • 即墨网站建设在哪可以投放广告的网站
  • 用模板建站互联网营销师培训教材
  • 男女做那个视频网站免费自拍西地那非片的功能主治和副作用
  • 珠海网站建seo网站优化经理
  • 北京两区建设在哪里北京seo编辑
  • 北京百度seo排名公司知了seo
  • 网站是怎么做优化上海外贸网站seo
  • web中英文网站怎么做企业培训内容包括哪些内容
  • 响应式 网站建设哪里可以引流到精准客户呢
  • cpanel wordpress南宁seo全网营销
  • 餐饮酒店网站建设自己创建网页
  • 广州公司网站搜索引擎优化包括哪些
  • 建筑工程网线接头规范抖音搜索引擎优化
  • 东营长安网站建设阿里指数怎么没有了
  • 哪家公司做网站不错每日关键词搜索排行
  • 记事本做网站改变图片大小谷歌推广怎么操作
  • 福州做网站需要多少钱甘肃搜索引擎网络优化
  • wap网站微信分享代码拉新平台哪个好佣金高
  • 微信自助下单小程序seo日常优化内容是什么
  • 个人建设网站服务器怎么解决广告sem是什么意思
  • 大气企业网站欣赏宠物美容师宠物美容培训学校
  • 高级网站建设常见的网络营销方法
  • 政务网站建设目的 意义seo是哪个英文的简写
  • 空调设备公司网站建设网站的推广优化
  • 给朋友做网站警察开找百度官网首页登录入口
  • 免费网站为何收录比较慢新媒体营销六种方式
  • 下载站cms优化大师最新版本
  • design网站站内推广的方法