当前位置: 首页 > wzjs >正文

网站布局介绍网站优化包括哪些

网站布局介绍,网站优化包括哪些,网站源码php,北京通州做网站的公司目录 一、本文介绍 二、原理介绍 三、核心代码 四、手把手教你添加C3k2WTConv 4.1 修改一 4.2 修改二 4.3 修改三 4.4 修改四 五、正式训练 5.1 yaml文件1 5.2 训练代码 5.3 训练过程截图 六、本文总结 一、本文介绍 本文给大家带来的改进机制是一种新的 卷积层…

目录

一、本文介绍

二、原理介绍

三、核心代码

四、手把手教你添加C3k2WTConv

4.1 修改一

4.2 修改二

4.3 修改三

4.4 修改四

五、正式训练

5.1 yaml文件1

5.2 训练代码

5.3 训练过程截图 

六、本文总结


一、本文介绍

本文给大家带来的改进机制是一种新的 卷积层 , 称为WTConv(小波卷积层) ,它利用 小波变换 (WT)来解决卷积神经网络(CNN)在实现大感受野时遇到的过度参数化问题。WTConv的主要目的是通过对输入数据的不同频率带进行处理,使CNN能够更有效地捕捉局部和全局特征,WTConv成功解决了CNN在感受野扩展中的参数膨胀问题,提供了一种更为高效、鲁棒且易于集成的卷积层解决方案,我将其用于二次创新YOLOv11中的C3k2机制可以减少百分之十的参数量和计算量,达到一个可观的轻量化作用 (这种小波Conv对于目前的创新角度来说是非常流行的) 

系列专栏 :

YOLOv11改进(更换卷积、添加注意力、更换主干网络、图像去噪、去雾、增强等)涨点系列------发论文必备​​​https://blog.csdn.net/m0_58941767/category_12987736.html?spm=1001.2014.3001.5482


二、原理介绍

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转

这篇名为《用于大感受野的小波卷积》的文章提出了一种新的卷积层,称为WTConv(小波卷积层),它利用小波变换(WT)来解决 卷积神经网络 (CNN)在实现大感受野时遇到的过度参数化问题。WTConv的主要目的是通过对输入数据的不同频率带进行处理,使CNN能够更有效地捕捉局部和全局特征,而传统的CNN主要只能处理局部特征。

以下是文章的主要内容总结:

1. 问题背景:传统的CNN受限于卷积核的大小,难以有效捕捉全局上下文信息。尽管近年来通过增大卷积核(如视觉Transformer)的尝试有所进展,但这通常会导致参数数量激增,模型性能饱和。

2. 提出的解决方案(WTConv):WTConv利用小波变换,通过多频率响应扩展卷积感受野,并在不同频率范围内执行小核卷积操作。通过小波分解,模型可以在更大范围内捕捉低频信息,同时避免模型的过度参数化。

3. 主要优势:

  • 参数增长缓慢:与传统方法相比,WTConv的参数数量仅随感受野大小对数级别增长,而不是平方增长。
  • 感受野扩大:WTConv通过层级小波分解,能够在不增加大量参数的情况下显著扩大CNN的感受野。
  • 形状偏差提升:WTConv层对图像中的低频信息更敏感,从而增强了CNN对形状而非纹理的响应能力。

总的来说,WTConv成功解决了CNN在感受野扩展中的参数膨胀问题,提供了一种更为高效、鲁棒且易于集成的卷积层解决方案。

三、核心代码

import torch.nn as nn
from functools import partial
import pywt
import pywt.data
import torch
import torch.nn.functional as F__all__ = ['C3k2_WTConv']def create_wavelet_filter(wave, in_size, out_size, type=torch.float):w = pywt.Wavelet(wave)dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)return dec_filters, rec_filtersdef wavelet_transform(x, filters):b, c, h, w = x.shapepad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)x = x.reshape(b, c, 4, h // 2, w // 2)return xdef inverse_wavelet_transform(x, filters):b, c, _, h_half, w_half = x.shapepad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)x = x.reshape(b, c * 4, h_half, w_half)x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)return xclass WTConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'):super(WTConv2d, self).__init__()assert in_channels == out_channelsself.in_channels = in_channelsself.wt_levels = wt_levelsself.stride = strideself.dilation = 1self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)self.wt_function = partial(wavelet_transform, filters=self.wt_filter)self.iwt_function = partial(inverse_wavelet_transform, filters=self.iwt_filter)self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1,groups=in_channels, bias=bias)self.base_scale = _ScaleModule([1, in_channels, 1, 1])self.wavelet_convs = nn.ModuleList([nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, dilation=1,groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)])self.wavelet_scale = nn.ModuleList([_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)])if self.stride > 1:self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter, bias=None, stride=self.stride,groups=in_channels)else:self.do_stride = Nonedef forward(self, x):x_ll_in_levels = []x_h_in_levels = []shapes_in_levels = []curr_x_ll = xfor i in range(self.wt_levels):curr_shape = curr_x_ll.shapeshapes_in_levels.append(curr_shape)if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)curr_x_ll = F.pad(curr_x_ll, curr_pads)curr_x = self.wt_function(curr_x_ll)curr_x_ll = curr_x[:, :, 0, :, :]shape_x = curr_x.shapecurr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))curr_x_tag = curr_x_tag.reshape(shape_x)x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])next_x_ll = 0for i in range(self.wt_levels - 1, -1, -1):curr_x_ll = x_ll_in_levels.pop()curr_x_h = x_h_in_levels.pop()curr_shape = shapes_in_levels.pop()curr_x_ll = curr_x_ll + next_x_llcurr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)next_x_ll = self.iwt_function(curr_x)next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]x_tag = next_x_llassert len(x_ll_in_levels) == 0x = self.base_scale(self.base_conv(x))x = x + x_tagif self.do_stride is not None:x = self.do_stride(x)return xclass _ScaleModule(nn.Module):def __init__(self, dims, init_scale=1.0, init_bias=0):super(_ScaleModule, self).__init__()self.dims = dimsself.weight = nn.Parameter(torch.ones(*dims) * init_scale)self.bias = Nonedef forward(self, x):return torch.mul(self.weight, x)class Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):"""Applies the YOLO FPN to input data."""return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))def autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class Bottleneck_WTConv(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)if c_ == c2:self.cv2 = WTConv2d(c_, c2, 5, 1)else:self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C2f(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))class C3(nn.Module):"""CSP Bottleneck with 3 convolutions."""def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))def forward(self, x):"""Forward pass through the CSP bottleneck with 2 convolutions."""return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))class C3k(C3):"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):"""Initializes the C3k module with specified channels, number of layers, and configurations."""super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e)  # hidden channels# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))self.m = nn.Sequential(*(Bottleneck_WTConv(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))class C3k2_WTConv(C2f):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""super().__init__(c1, c2, n, shortcut, g, e)self.m = nn.ModuleList(C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck_WTConv(self.c, self.c, shortcut, g) for _ in range(n))if __name__ == "__main__":# Generating Sample imageimage_size = (1, 64, 240, 240)image = torch.rand(*image_size)# Modelmobilenet_v1 = C3k2_WTConv(64, 64)out = mobilenet_v1(image)print(out.size())

 四、手把手教你添加C3k2WTConv

4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二

第二步我们在该目录下创建一个新的py文件名字为'__init__.py' ,然后在其内部导入我们的检测头如下图所示。


4.3 修改三

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块 


4.4 修改四

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、正式训练

5.1 yaml文件1

训练信息:YOLO11-C3k2-WTConv summary: 344 layers, 2,480,347 parameters, 2,470,091 gradients, 6.3 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2_WTConv, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2_WTConv, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2_WTConv, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2_WTConv, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2_WTConv, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2_WTConv, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2_WTConv, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2_WTConv, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

5.2 训练代码

大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('模型配置文件')# 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,# 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!# model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度model.train(data=r"C:\Users\Administrator\PycharmProjects\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml",# 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, posecache=False,imgsz=640,epochs=150,single_cls=False,  # 是否是单类别检测batch=16,close_mosaic=0,workers=0,device='0',optimizer='SGD', # using SGD# resume='runs/train/exp21/weights/last.pt', # 如过想续训就设置last.pt的地址amp=True,  # 如果出现训练损失为Nan可以关闭ampproject='runs/train',name='exp',)

5.3 训练过程截图 

六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

http://www.dtcms.com/wzjs/3198.html

相关文章:

  • 校园网网站建设费用谷歌推广怎么做
  • 专业返利网站开发开发一个平台需要多少钱
  • 行业排名查询网站网络推广关键词优化公司
  • 聊城有什么网站制作公司google chrome
  • 淄博有做网站的吗跨境电商平台推广
  • 南宁模板做网站成都最新动态
  • 免费建网站 手机网站线上引流的八种推广方式
  • 白色网站源码域名检测工具
  • app制作教程电脑流程十堰seo优化
  • 做铝材哪些网站招聘湖南专业seo推广
  • 翔安区建设局网站网络营销策略的定义
  • 店铺推广和网站优化一起做谷歌google官方下载
  • wordpress文章只显示题目东莞seo优化seo关键词
  • 做小程序还是做网站厦门关键词排名seo
  • 网站开发 属于研发费用吗电商软文范例
  • 手机微信网站怎么做的百度问问首页
  • 电商网站有哪些类型google代理
  • 百度推广做网站百度关键词优化服务
  • 德州做网站建设的公司seo百度快速排名软件
  • 自己的商品链接怎么弄海淀区seo搜索引擎
  • 杭州公司建设网站百度刷首页怎么刷
  • 网站公司建设公司深圳设计公司
  • 关于做网站的了解点谷歌外链代发
  • 网站建设及验收标准seo专员是干嘛的
  • 网站建设先进个人百度收录怎么做
  • 杭州做网站找力果武汉最新今天的消息
  • 长春建个网站需要多少钱?怎么建立网站?
  • 怎么做服务器网站吗排名前50名免费的网站
  • 青岛大学网站建设seo顾问服务咨询
  • 江苏建设网站公司简介广告媒体资源平台