当前位置: 首页 > wzjs >正文

东莞找公司网站上海推广服务

东莞找公司网站,上海推广服务,龙华网站建设哪家好,手机端详情页写在前面本文基于Pytorch,采用CNN卷积神经网络实现手写数字识别,共采用了2个卷积层、1个池化层和2个线性层。实验准备首先需要先导入必要的依赖包import torch from torchvision import transforms from PIL import Image import matplotlib.pyplot as p…

写在前面

本文基于Pytorch,采用CNN卷积神经网络实现手写数字识别,共采用了2个卷积层、1个池化层和2个线性层。

实验准备

首先需要先导入必要的依赖包

import torch
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
from model import CNN

然后需要准备数据集并进行加载

# 1. 数据准备
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])# 下载并加载训练集和测试集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1000, shuffle=False)

随后定义了CNN卷积模型,包含2个卷积层、1个最大池化层以及2个线性层

class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.dropout1 = nn.Dropout(0.25)self.dropout2 = nn.Dropout(0.5)self.fc1 = nn.Linear(64 * 7 * 7, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.pool(torch.relu(self.conv1(x)))x = self.pool(torch.relu(self.conv2(x)))x = self.dropout1(x)x = x.view(-1, 64 * 7 * 7)  # 展平x = torch.relu(self.fc1(x))x = self.dropout2(x)x = self.fc2(x)return x

初始化参数

# 2. 定义模型
model = CNN().to(device)# 3. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

训练与测试

训练函数

def train(model, device, train_loader, optimizer, criterion, epoch):model.train()train_loss = 0correct = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()train_loss += loss.item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()train_loss /= len(train_loader.dataset)accuracy = 100. * correct / len(train_loader.dataset)print(f'Train Epoch: {epoch} \tLoss: {train_loss:.6f} \tAccuracy: {accuracy:.2f}%')return train_loss, accuracy

测试函数

# 5. 测试函数
def test(model, device, test_loader, criterion):model.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)accuracy = 100. * correct / len(test_loader.dataset)print(f'Test set: Average loss: {test_loss:.6f} \tAccuracy: {accuracy:.2f}%')return test_loss, accuracy

训练出最优模型

def main():epochs = 10best_accuracy = 0.0model_save_path = 'best_model.pth'for epoch in range(1, epochs + 1):train_loss, train_acc = train(model, device, train_loader, optimizer, criterion, epoch)test_loss, test_acc = test(model, device, test_loader, criterion)# 保存最佳模型if test_acc > best_accuracy:best_accuracy = test_acctorch.save({'epoch': epoch,'model_state_dict': model.state_dict(),'optimizer_state_dict': optimizer.state_dict(),'loss': test_loss,'accuracy': test_acc}, model_save_path)print(f"New best model saved with accuracy: {best_accuracy:.2f}%")print(f"Training complete. Best test accuracy: {best_accuracy:.2f}%")

实际预测

加载模型

def load_model(model_path):model = CNN()checkpoint = torch.load(model_path, map_location='cpu')  # 使用CPU加载model.load_state_dict(checkpoint['model_state_dict'])model.eval()  # 设置为评估模式return model

图像预处理

def preprocess_image(image_path):# 与训练时相同的转换transform = transforms.Compose([transforms.Grayscale(),  # 转换为灰度图transforms.Resize((28, 28)),  # MNIST是28x28transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])image = Image.open(image_path)image = transform(image).unsqueeze(0)  # 添加batch维度return image

预测函数

def predict(model, image_tensor):with torch.no_grad():output = model(image_tensor)_, predicted = torch.max(output.data, 1)probabilities = torch.softmax(output, dim=1)return predicted.item(), probabilities.squeeze().tolist()

可视化函数

def visualize_prediction(image_path, prediction, probabilities):image = Image.open(image_path)plt.imshow(image, cmap='gray')plt.title(f'Predicted: {prediction}')plt.axis('off')# 显示概率分布plt.figure()plt.bar(range(10), probabilities)plt.xticks(range(10))plt.xlabel('Digit')plt.ylabel('Probability')plt.title('Prediction Probabilities')plt.show()

主函数

def recognition(image_path):# 参数设置model_path = 'best_model.pth'# 加载模型model = load_model(model_path)print("Model loaded successfully.")# 预处理图像image_tensor = preprocess_image(image_path)# 进行预测prediction, probabilities = predict(model, image_tensor)print(f"Predicted digit: {prediction}")print("Probabilities for each digit (0-9):")for i, prob in enumerate(probabilities):print(f"{i}: {prob * 100:.2f}%")# 可视化结果visualize_prediction(image_path, prediction, probabilities)

最后,调用主函数检测手写数字体。以手写数字0为例

检测结果如下所示,展示了CNN模型对每一个数字的检测概率,据条形图可知数字0的概率最大。

http://www.dtcms.com/wzjs/317765.html

相关文章:

  • php网站开发程序填空题免费发布推广信息的b2b
  • 呼和浩特城乡建设网站优化大师有必要安装吗
  • 公司找网站做宣传做账无锡百度竞价
  • 仪器网站模板360seo关键词优化
  • 网站动图怎么做广告投放方式
  • 网站信息 订阅如何做南宁网站建设服务公司
  • 返利导购网站建设需求文档明星百度指数在线查询
  • 做ppt的网站叫什么软件营销策划经典案例
  • 海珠电子商务网站建设关键的近义词
  • 阿里云网站建设方案书怎么写手机维修培训班学校
  • 如何在线上推广自己的产品seo主要是指优化
  • 做网站和做网页cba最新排名
  • 网站文章正文可以做内链吗国外网站开发
  • 电子商务系统包括抖音seo优化公司
  • python可以做网站吗系统优化的例子
  • 淘宝客怎么做直播网站网页在线客服免费版
  • 泰安网站建设工作室外链吧
  • 网站建设 bs模式百度免费优化
  • 优秀网站配色模板之家
  • 网站建设的品牌seo搜索引擎优化人员
  • 个人网站建设主要功能搜狗收录入口
  • wordpress内存高搜索引擎优化策略有哪些
  • 如何查看一个网站的浏览量微信推广
  • php做简单网站教程视频郑州做网站公司有哪些
  • 一步一步教你做网站后台视频临沂seo推广
  • 深圳有什么做招聘网站的公司吗会计培训班推荐
  • 百度蜘蛛抓取网站模块全国新冠疫苗接种率
  • 免费域名做网站关键词搜索数据
  • 最流行网站开发工具5118营销大数据
  • phpstudy怎样做多个网站巨量数据分析入口