郑州网站建设推广报价链接
文章目录
- 1. description
- 2. code
1. description
后续整理
GAN是生成对抗网络,主要由G生成器,D判别器组成,具体形式如下
- D 判别器:
- G生成器:
2. code
部分源码,暂定,后续修改
import numpy as np
import os
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader, Datasetimport torch.cudaimage_size = [1, 28, 28]
latent_dim = 96
label_emb_dim = 32
batch_size = 64
use_gpu = torch.cuda.is_available()
save_dir = "cgan_images"
os.makedirs(save_dir, exist_ok=True)class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.embedding = nn.Embedding(10, label_emb_dim)self.model = nn.Sequential(nn.Linear(label_emb_dim + label_emb_dim, 128),nn.BatchNorm1d(128),nn.GELU(),nn.Linear(128, 256),nn.BatchNorm1d(256),nn.GELU(),nn.Linear(256, 512),nn.BatchNorm1d(512),nn.GELU(),nn.Linear(512, 1024),nn.BatchNorm1d(1024),nn.GELU(),nn.Linear(1024, np.prod(image_size, dtype=np.int32)),nn.Sigmoid(),)def forward(self, z, labels):# shape of z:[batch_size,latent_dim]label_embedding = self.embedding(labels)z = torch.cat([z, label_embedding], axis=-1)output = self.model(z)image = output.reshape(z.shape[0], *image_size)return imageclass Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.embedding = nn.Embedding(10, label_emb_dim)self.model = nn.Sequential(nn.Linear(np.prod(image_size, dtype=np.int32) + label_emb_dim, 512),torch.nn.GELU(),# nn.Linear(512,256)nn.utils.spectral_norm(nn.Linear(512, 256)),nn.GELU(),# nn.Linear(256,128)nn.utils.spectral_norm(nn.Linear(256, 128)),nn.GELU(),# nn.Linear(128,64)nn.utils.spectral_norm(nn.Linear(128, 64)),nn.GELU(),# nn.Linear(64,32)nn.utils.spectral_norm(nn.Linear(64, 32)),nn.GELU(),# nn.Linear(32,1)nn.utils.spectral_norm(nn.Linear(32, 1)),nn.Sigmoid(),)def forward(self, image, labels):# shape of image:[batch_size,1,28,28]label_embedding = self.embedding(labels)prob = self.model(torch.cat([image.reshape(image.shape[0], -1), label_embedding], axis=-1))return probif __name__ == "__main__":run_code = 0v_transform = torchvision.transforms.Compose([torchvision.transforms.Resize(28),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.5], [0.5])])dataset = torchvision.datasets.MNIST("mnist_data", train=True, download=True, transform=v_transform)dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, drop_last=True)generator = Generator()discriminator = Discriminator()g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.4, 0.8), weight_decay=0.0001)d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0003, betas=(0.4, 0.8), weight_decay=0.0001)loss_fn = nn.BCELoss()labels_one = torch.ones(batch_size, 1)labels_zero = torch.zeros(batch_size, 1)if use_gpu:print("use gpu for trainning")generator = generator.cuda()discriminator = discriminator.cuda()loss_fn = loss_fn.cuda()labels_one = labels_one.to("cuda")labels_zero = labels_zero.to("cuda")num_epoch = 200for epoch in range(num_epoch):for i, mini_batch in enumerate(dataloader):gt_images, labels = mini_batchz = torch.randn(batch_size, latent_dim)if use_gpu:gt_images = gt_images.to("cuda")z = z.to("cuda")pred_images = generator(z, labels)g_optimizer.zero_grad()recons_loss = torch.abs(pred_images - gt_images).mean()g_loss = 0.05 * recons_loss + loss_fn(discriminator(pred_images, labels), labels_one)g_loss.backward()g_optimizer.step()d_optimizer.zero_grad()real_loss = loss_fn(discriminator(gt_images, labels), labels_one)fake_loss = loss_fn(discriminator(pred_images, labels), labels_zero)d_loss = real_loss + fake_loss# 观察 real_loss 与 fake_loss 同时下降同时达到最小值,并且差不多大,说明D已经稳定了d_loss.backward()d_optimizer.step()if i % 50 == 0:print(f"step:{len(dataloader) * epoch + i},recons_loss:{recons_loss.item()},g_loss:{g_loss.item()},"f"d_loss:{d_loss.item()},real_loss:{real_loss.item()},fake_loss:{fake_loss.item()},d_loss:{d_loss.item()}")if i % 800 == 0:image = pred_images[:16].datatorchvision.utils.save_image(image, f"{save_dir}/image_{len(dataloader) * epoch + i}.png", nrow=4)