当前位置: 首页 > wzjs >正文

网站制作报价ihanshi网络视频营销策略有哪些

网站制作报价ihanshi,网络视频营销策略有哪些,怎么看一个网站谁做的优化,合肥网络推广服务公司Class00.2线性代数 标量 vs 向量 如上图,左边是标量,右边是向量,抛去概念可以简单理解为向量就是有方向的标量。 左侧展示一个标量:一个温度计上标有 “温度 25C” 右侧展示一个向量:一个箭头,表示 “速度…

Class00.2线性代数

标量 vs 向量

在这里插入图片描述
如上图,左边是标量,右边是向量,抛去概念可以简单理解为向量就是有方向的标量。

左侧展示一个标量:一个温度计上标有 “温度 = 25°C”

右侧展示一个向量:一个箭头,表示 “速度 = 10 m/s 向右”

可以看到左侧的温度只是一个数据,右边的则则需要有指定的方向。

标量

向量的简单操作
在这里插入图片描述
向量的长度计算
在这里插入图片描述

向量

向量的和与积
在这里插入图片描述
向量的简单操作
在这里插入图片描述
向量的长度
在这里插入图片描述

点乘和正交

点乘
点乘也叫做内积
两个向量 a 和 b 的点乘公式是:
在这里插入图片描述

其中 θ 是两向量之间的夹角。

正交
两个向量正交(orthogonal) 就是它们互相垂直,夹角为90°,此时:
在这里插入图片描述
区别与联系

正交 ⇨ 点乘为 0
点乘为 0 ⇨ 向量正交

点乘是一个操作,得出一个标量
正交是一种关系,由点乘结果是否为 0 来判断

在这里插入图片描述
非正交向量:夹角小于 90°,点乘为正
正交向量:互相垂直,点乘为 0

矩阵

简单来说,就是一个按行和列排列的数字表格。例如:
在这里插入图片描述
这个3行3列的数字表格就是一个矩阵。

假设你有三天的天气预报,每天记录上午、中午和下午的温度,那么你可以把这些温度写成一个矩阵:

上午中午下午
第一天20°C25°C22°C
第二天21°C26°C23°C
第三天19°C24°C21°C

矩阵的简单操作

在这里插入图片描述
矩阵的乘法

假设有两个矩阵:
在这里插入图片描述
矩阵乘法的规则是:
矩阵𝐴的第𝑖行和矩阵𝐵的第𝑗列对应元素相乘再求和,得到结果矩阵的第 𝑖,𝑗个元素。

计算步骤:
计算结果矩阵 𝐶 = 𝐴×𝐵,它也是2行2列。
在这里插入图片描述
所以:
在这里插入图片描述
简单来说,矩阵乘法就是按行乘列,对应元素乘积相加,得到新矩阵的每个元素。

矩阵的数学意义

  1. 矩阵作为线性变换

最直观的矩阵意义是:矩阵代表一种线性变换,它把一个向量变换成另一个向量
在这里插入图片描述
这个过程可以看作是把向量 𝑥从原空间映射到另一个空间(维度可能不同)。

  1. 几何意义(二维情况)

在二维空间中,一个 2×2 矩阵 𝐴对一个二维向量 X=(𝑥,𝑦)
做变换,会对平面上的点做如下变换:
在这里插入图片描述
这些都是线性变换的典型表现。

假设有矩阵
在这里插入图片描述
输入向量 𝑥=(𝑥,𝑦)输出是:
在这里插入图片描述
这表示沿 𝑥轴方向放大2倍,𝑦轴方向不变。
在这里插入图片描述

范数

范数(Norm)是线性代数和数学分析中用来度量向量或矩阵“大小”或“长度”的一种函数。它是从向量空间到实数的一个映射,具有一些特定的性质,用于表示向量或矩阵的“量级”。

范数的定义
在数学中,给定一个向量空间 𝑉,范数是一个函数:
在这里插入图片描述
对于向量𝑥∈𝑉它的范数记作||x||,必须满足以下三个公理:

1.非负性

在这里插入图片描述
范数总是非负的,且仅当向量为零向量时范数为 0。

2.正齐次性

在这里插入图片描述

缩放向量会相应缩放范数(长度)。

3.三角不等式

在这里插入图片描述
向量和的“长度”不超过它们长度之和。

矩阵范数

矩阵范数是用来衡量一个矩阵“大小”的工具。

就像向量范数衡量一个向量有多“长”,矩阵范数衡量的是矩阵对数据的拉伸能力、元素的整体大小或变化的幅度。

把一个矩阵看作一个变换器,它对一个向量做“变换”:

在这里插入图片描述
矩阵范数就告诉你:
“这个变换器最多能把输入的向量放大多少?”

Frobenius 范数
在这里插入图片描述

在这里插入图片描述
表示矩阵𝐴的Frobenius 范数。

在这里插入图片描述
表示对矩阵中所有元素𝐴𝑖𝑗求平方,然后求和:
在这里插入图片描述
即:把矩阵所有元素当成一大串数字,逐个平方后加起来。

在这里插入图片描述
相当于对总和开平方根。

总体类似于:在这里插入图片描述

对称矩阵和反对称矩阵

对称矩阵:
在这里插入图片描述
反对称矩阵:
在这里插入图片描述

置换矩阵

3 阶单位矩阵𝐼:

在这里插入图片描述
我们将第 1 行和第 3 行互换,得到一个置换矩阵在这里插入图片描述
这个矩阵的作用是:把任意矩阵的第 1 行和第 3 行互换

转置矩阵

给定一个矩阵 𝐴,它的转置矩阵记作 𝐴𝑇,是将原矩阵的行变为列,列变为行所得到的新矩阵。

设矩阵𝐴是:在这里插入图片描述
则它的转置矩阵 𝐴𝑇是:
在这里插入图片描述

正交矩阵

一个实矩阵 𝑄是正交的,当满足:
在这里插入图片描述
也就是说,它的转置矩阵等于它的逆矩阵。

矩阵
在这里插入图片描述

转置 𝑄𝑇:
在这里插入图片描述

再计算 𝑄𝑇*𝑄:
在这里插入图片描述
确实成立,所以这个矩阵是正交矩阵。

特征向量和特征值

对一个方阵𝐴如果存在一个非零向量𝑣⃗和一个标量𝜆使得:
在这里插入图片描述
那么:
𝑣⃗就叫做特征向量
𝜆就叫做对应的特征值

只要是对称矩阵,就会有特征向量。

假设矩阵为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

http://www.dtcms.com/wzjs/311825.html

相关文章:

  • 诸暨公司做网站seo网络优化日常工作内容
  • 怎么免费做一个网站有没有免费的推广网站
  • 宝安建设与住宅局网站怎么做宣传推广
  • 导航网站前端模板下载百度竞价怎么做
  • 潍坊建设网站公司seo排名首页
  • 哪个平台做网站好制作网站的软件
  • 免费移动版wordpress2020 惠州seo服务
  • go语言做的网站河南百度推广电话
  • 遂宁市建设银行网站夜夜草
  • 商务信息网站怎么做竞价服务托管价格
  • 提高政府的门户网站建设2023年6月疫情恢复
  • 百度推广网页制作seo关键字排名
  • 网站ftp查询长沙网站推广排名优化
  • 四川时宇建设工程有限公司官方网站谷歌手机版浏览器官网
  • 目前网站开发的主流语言是什么seo快速排名软件
  • 南通做网站推广的公司网络营销有哪些特点
  • 网站制作公司南宁哪里有整站优化
  • wordpress 分类 模板关键词排名优化营销推广
  • 网站建设用语言长沙做网站推广
  • 上海工作网站hao123影视
  • 日本无线上网wifi广州百度快速优化排名
  • 广告制作公司需要什么资质石家庄百度快照优化排名
  • 做网站会什么问题seo推广是做什么
  • 四平做网站佳业脚本外链平台
  • wordpress nginx 配置文件网站制作优化
  • 网站建设重要意义广告网页
  • 网站域名地址查询广告词
  • 广州网站制作武汉公众号关键词排名优化
  • 商务网站建设的可行性分析包括广告联盟骗局
  • 哈尔滨网站推广会计培训