当前位置: 首页 > wzjs >正文

广州十大电商公司广州谷歌seo公司

广州十大电商公司,广州谷歌seo公司,做的视频发到哪个网站好,php网站开发工程师招聘网1 毕达哥拉斯定理和余弦定理 1.1 毕达哥拉斯定理(勾股定理) 对于 毕达哥拉斯定理(勾股定理) 大家应该都比较熟悉,在一个直角三角形中,两条 直角边的平方之和 等于 斜边的平方 例如一个直角三角形两个直角…

1 毕达哥拉斯定理和余弦定理

1.1 毕达哥拉斯定理(勾股定理)

对于 毕达哥拉斯定理(勾股定理) 大家应该都比较熟悉,在一个直角三角形中,两条 直角边的平方之和 等于 斜边的平方
例如一个直角三角形两个直角边分别是 a 和 b, 斜边为 c,其数学表达式可以写为:
a 2 + b 2 = c 2 a^2 + b^2 = c^2 a2+b2=c2

1.2 从毕达哥拉斯定理(勾股定理)到余弦定理

那么,我们可以很自然的推导出 ab 夹角是锐角和钝角的情况,如下表所示:

ab夹角表达式
< 90度 a 2 + b 2 − c 2 > 0 a^2 + b^2 - c^2 > 0 a2+b2c2>0
= 90度 a 2 + b 2 − c 2 = 0 a^2 + b^2 - c^2 = 0 a2+b2c2=0
> 90度 a 2 + b 2 − c 2 < 0 a^2 + b^2 - c^2 < 0 a2+b2c2<0

将上述表达式除以 2ab 消除边长对计算结果的影响,使计算结果落在 -1 - 1之间,由此我们便从毕达哥拉斯定理出发得到了余弦定理的公式
cos ⁡ γ = a 2 + b 2 − c 2 2 a b \cos\gamma=\frac{a^2+b^2-c^2}{2ab} cosγ=2aba2+b2c2

2.向量距离和夹角余弦的计算

机器学习中常用的向量距离夹角余弦的计算使用上述两个公式便可以很容易的计算出来。

本文中关于 向量的距离 仅仅讨论 欧氏距离

2.1 向量的距离计算

2.1.1 以二维空间为例推导

假设有两个二维向量 ( x 1 , x 2 ) , ( y 1 , y 2 ) (x_1, x_2) , (y_1, y_2) (x1,x2),(y1,y2),要计算这两个向量之间的欧式距离即为计算下图中 c 的长度,依据勾股定理便能轻松计算
在这里插入图片描述
a = y 1 − x 1 b = x 2 − y 2 带入毕达哥拉斯定理: c = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 a = y_1 - x_1 \\ b = x_2 - y_2 \\ 带入毕达哥拉斯定理:\\ c = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} a=y1x1b=x2y2带入毕达哥拉斯定理:c=(x1y1)2+(x2y2)2

2.1.2 扩展到多维

E D ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 ED(x,y)=\sqrt{\sum_{i=1}^n\left(x_i-y_i\right)^2} ED(x,y)=i=1n(xiyi)2

2.2 向量夹角余弦的计算

2.2.1 以二维空间为例推导

如下图所示,只要将 a, b, c的值带入 cos ⁡ γ = a 2 + b 2 − c 2 2 a b \cos\gamma=\frac{a^2+b^2-c^2}{2ab} cosγ=2aba2+b2c2 即可

a = x 1 2 + x 2 2 b = y 1 2 + y 2 2 c = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 a = \sqrt{x_1^2 + x_2^2} \\ b = \sqrt{y_1^2 + y_2^2} \\ c = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} a=x12+x22 b=y12+y22 c=(x1y1)2+(x2y2)2
带入 cos ⁡ γ = a 2 + b 2 − c 2 2 a b \cos\gamma=\frac{a^2+b^2-c^2}{2ab} cosγ=2aba2+b2c2

cos ⁡ γ = x 1 2 + x 2 2 2 + y 1 2 + y 2 2 2 − ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 2 2 ∗ x 1 2 + y 1 2 ∗ x 2 2 + y 2 2 \cos\gamma = \cfrac{ {\sqrt{x_1^2 + x_2^2}}^2 + {\sqrt{y_1^2 + y_2^2}}^2 - {\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}}^2}{2*\sqrt{x_1^2 + y_1^2}*\sqrt{x_2^2 + y_2^2}} cosγ=2x12+y12 x22+y22 x12+x22 2+y12+y22 2(x1y1)2+(x2y2)2 2

化简后得到:
cos ⁡ γ = x 1 y 1 + x 2 y 2 ( x 1 2 + x 2 2 ) ( y 1 2 + y 2 2 ) \cos\gamma =\cfrac{x_1 y_1 + x_2 y_2} {\sqrt{(x_1^2+x_2^2)(y_1^2 + y_2^2)}} cosγ=(x12+x22)(y12+y22) x1y1+x2y2
在这里插入图片描述

2.2.1 扩展到多维

c o s γ = ∑ i = 1 n ( x i × y i ) ∑ i = 1 n x i 2 × ∑ i = 1 n y i 2 \mathrm{ cos } γ =\frac{\sum_{i=1}^n(x_i\times y_i)}{\sqrt{\sum_{i=1}^nx_i^2\times\sum_{i=1}^ny_i^2}} cosγ=i=1nxi2×i=1nyi2 i=1n(xi×yi)

http://www.dtcms.com/wzjs/304986.html

相关文章:

  • 做网站zwnet石家庄头条今日头条新闻
  • wordpress 网站 注册seo推广公司教程
  • 荔浦网站开发想要导航推广网页怎么做
  • 网站建设报告心得体会搜索大全引擎
  • 中国建设网官方网站app病毒式营销
  • 视频网站如何优化北京企业网站seo平台
  • 视频网站 建设semiconductor是什么意思
  • 手机靓号网站建设网站建设公司好
  • 做冷饮的网站怎么去推广自己的网站
  • 如何做公众号影视网站网络营销的认识
  • 网站建设需要哪个部门审批百度推广信息流有用吗
  • 网站备案照片 多少钱qq引流推广软件免费
  • aspcms 手机网站网站关键词排名怎么优化
  • 郑州专业旅游网站建设姓名查询
  • 呼和浩特做网站公司朝阳网站建设公司
  • 做网站需要的素材资料店铺引流的30种方法
  • 重庆网站推广招聘卡点视频软件下载
  • wordpress如何跳转页面步骤杭州seo网站推广排名
  • 做网站的不足 心得网站关键词排名分析
  • 网站界面技术方案如何申请网站域名流程
  • 网站虚拟主持人济南最新消息今天
  • 山东营销网站建设联系方式nba最新消息新闻
  • 中国社交网站做多外国人的什么是引流推广
  • 深圳营销型网站建设优化seo优化网站的注意事项
  • 专门做油画交流的网站网站推广怎么优化
  • 住房城乡建设管理网站免费的网站关键词查询工具
  • 武汉做网站jw100广东seo价格是多少钱
  • 做个人网站到哪里做鹤壁搜索引擎优化
  • 网站后续建设说明seo研究中心好客站
  • 好的网站建设商家免费浏览外国网站的软件