当前位置: 首页 > wzjs >正文

广州金融网站设计长春百度seo排名

广州金融网站设计,长春百度seo排名,深圳宝安网站设计公司,成都企业网站建设线索二叉树构造以及遍历算法 线索二叉树(中序遍历版)构造线索二叉树构造双向线索链表遍历中序线索二叉树 线索二叉树(中序遍历版) 中序遍历找到对应结点的前驱(土方法) #mermaid-svg-eunGO5d2GhjLxCn5 {fo…

线索二叉树构造以及遍历算法

  • 线索二叉树(中序遍历版)
    • 构造线索二叉树
    • 构造双向线索链表
    • 遍历中序线索二叉树

线索二叉树(中序遍历版)

中序遍历找到对应结点的前驱(土方法)

visit 函数
q 是否等于 p
传入节点 q
final = pre
pre = q
返回
开始
调用 InOrder T
树 T 是否为空
结束
递归调用 InOrder T->lchild
调用 visit T
递归调用 InOrder T->rchild
visit
typedef struct BiNode{int data;BiNode *lchild, *rchild;
}BiNode, *BiTree;BiNode *p;  // 指向目标节点
BiNode *pre = NULL; // 指向当前访问节点的前驱
BiNode *final = NULL; // 记录最终结果void InOrder(BiTree T){if(T != NULL){InOrder(T -> lchild);visit(T);InOrder(T -> rchild);}
}// 找到目标节点的前驱节点
void visit(BiNode *q){  // q代表当前访问节点if(p == q)final = pre;   // 如果当前访问节点和目标节点一致了,那么pre就是我们需要找的前驱elsepre = q;       // 如果不一致,那么更新前驱节点
}

由上述代码我们可以知道,如果使用土方法来寻找目标节点的前驱节点,那么每找一次,就需要对二叉树进行一次遍历,这样对资源的浪费是不言而喻的,所以我们需要采用线索二叉树来更加快速地寻找对应节点的前驱后继,通过线索二叉树,我们可以实现对二叉树的随机访问。

问题1:为什么在visit函数中不需要对q进行迭代?

回答1:因为 q q q的迭代是在 I n O r d e r InOrder InOrder中进行的,在每一次对 I n O r d e r InOrder InOrder的递归中,传入 v i s i t visit visit的节点会不会·不断变化,也就实现了对 q q q的迭代。

线索二叉树实际就是用空的 n + 1 个空指针指向直接前驱和直接后继。如果一个节点的左孩子为空,则左孩子指针指向当前节点的前驱,改 l t a g ltag ltag为1;如果一个节点的右孩子为空,则用右孩子指针指向当前节点的后继,改 r t a g rtag rtag为1。

lchildltagdatartagrchild
指示左孩子00指示右孩子
指示直接前驱11指示直接后继
// 线索二叉树的存储结构
typedef struct ThreadTree{int data;struct ThreadTree *lchild, *rchild;int ltag, rtag;
}ThreadNode, *ThreadTree;

构造线索二叉树

通过中序遍历对二叉树线索化

InThread函数
p 是否为空?
传入 p 和 pre
返回
递归调用 InThread p->lchild, pre
p->lchild 是否为空?
p->lchild = pre p->ltag = 1
不做操作
pre 是否非空且 pre->rchild 是否为空?
pre->rchild = p pre->rtag = 1
不做操作
pre = p
递归调用 InThread p->rchild, pre
开始
调用 CreateInThread T
树 T 是否为空?
结束
初始化 pre = NULL
调用 InThread T, pre
pre->rchild = NULL pre->rtag = 1
void InThread(ThreadTree &p, ThreadTree &pre){ // p是当前访问节点,pre为当前访问节点的前驱if(p != NULL){InThread(p -> lchild);if(p -> lchild == NULL){  // 如果左孩子为空,则更新左孩子为前驱,ltag为1p -> lchild = pre;ltag = 1;}if(pre != NULL && pre -> rchild == NULL){ // 若前驱节点非空且其右子树为空,则更新其右孩子为后继,rtag为1pre -> rchild = p;pre -> rtag = 1;}pre = p;InThread(p -> rchild);}
}
void CreateInThread(ThreadTree T){Thread pre = NULL;if(T != NULL){InThread(T, pre);pre -> rchild = NULL; // 处理最后一个节点pre -> rtag = 1;}
}

问题2:为什么在创建二叉树的时候需要判断pre是否为空?

回答2为了避免空指针引用,我们在创建线索二叉树的时候,会把pre初始化为NULL(也就是其实并没有这个节点),因为第一个节点没有直接的前驱,而如果我们不对空指针进行判断的话,那么pre的后继就会是当前节点p,那么究竟谁才是第一个节点呢?运行起来就会导致程序崩溃。只有当pre不为空时,才有意义去判断其右子树是否为空,为它建立线索二叉树才有意义。

构造双向线索链表

但是这样的线索二叉树还是存在一些问题,比如没有办法从第一个节点直接遍历到最后一个节点,为此我们可以建立一个头节点,让其lchild指向二叉树的根节点,其rchild指向中序遍历时访问的最后一个节点。令中序遍历的第一个节点的lchild指向头节点,也就是第一个节点的前驱不再是NULL,而是head;令中序遍历的最后一个节点的rchild指向头节点,也就是最后一个节点的后继也不再是NULL,而是head。这样一来,我们就获得了一个双向线索链表。

InThread函数
p 是否为空?
传入 p 和 pre
返回
递归调用 InThread p->lchild, pre
p->lchild 是否为空?
p->lchild = pre p->ltag = 1
不做操作
pre 是否非空且 pre->rchild 是否为空?
pre->rchild = p pre->rtag = 1
不做操作
pre = p
递归调用 InThread p->rchild, pre
开始
调用 CreateInThread T
分配头节点 head
head 分配成功?
结束
设置 head->ltag = 0
设置 head->rtag = 1
设置 head->rchild = head
T 是否为空?
设置 head->lchild = head
设置 head->lchild = T
初始化 pre = head
调用 InThread T, pre
设置 pre->rchild = head pre->rtag = 1
初始化 first = head->lchild
first->ltag == 0?
first = first->lchild
设置 first->lchild = head
void InThread(ThreadTree &p, ThreadTree &pre){ // p是当前访问节点,pre为当前访问节点的前驱if(p != NULL){InThread(p -> lchild);if(p -> lchild == NULL){  // 如果左孩子为空,则更新左孩子为前驱,ltag为1p -> lchild = pre;ltag = 1;}if(pre != NULL && pre -> rchild == NULL){ // 若前驱节点非空且其右子树为空,则更新其右孩子为后继,rtag为1pre -> rchild = p;pre -> rtag = 1;}pre = p;InThread(p -> rchild);}
}
void CreateInThread(ThreadTree T){ThreadNode *head = (ThreadTree*)malloc(sizeof(ThreadTree));if(head == NULL)return ;head -> ltag = 0; // 指向根节点head -> rtag = 1; // 指向最后一个节点head -> rchild = head; // 初始化右指针指向自己if(T == NULL){head -> lchild = head;}else {head -> lchild = T;ThreadTree pre = head;InTread(T, pre);// 处理最后一个节点pre -> rchild = head;pre -> rtag = 1;// 处理第一个节点ThreadNode *first = head -> lchild; // 初始化第一个节点为根节点,方便找到第一个节点// 寻找中序遍历的第一个节点while(first -> ltag == 0) // 如果lchild是指向左孩子则迭代first = first -> lchild;first -> lchild = head;}
}

遍历中序线索二叉树

只要先找到序列中的第一个节点,然后依次找节点的后继,直到其后继为空便可完成遍历;

1. 求第一个节点

ThreadNode *FirstNode(ThreadNode *p){while(p -> ltag == 0) p = p -> lchild;return p;
}

2. 求中序线索二叉树中节点p在中序序列下的后继

ThreadNode *NextNode(ThreadNode *p){if(p -> rtag == 0) return FirstNode(p -> rchild); // 右子树中最左下节点else return p -> rchild;
}

3. 求中序线索二叉树的最后一个节点

ThreadNode *LastNode(ThreadNode *p){while(p -> rtag == 0) p = p -> rchild;return p;
}

4. 求节点p前驱

ThreadNode *PreNode(ThreadNode *p){if(p -> ltag == 0) return LastNode(p -> lchild);return p;
}

利用上述1.2.两个算法,我们可以写出不含头节点的中序线索二叉树的中序遍历算法:

void InOrder(ThreadNode *T){for(ThreadNode *p = FirstNode(T); p != NULL; p = NextNode(p))visit(p); // 访问节点,可自由设定
}
http://www.dtcms.com/wzjs/298079.html

相关文章:

  • 记事本代码做网站系统优化是什么意思
  • 旅游景区网站建设的意义百度应用下载安装
  • 做网站横幅技巧某个产品营销推广方案
  • 网站建设相关优化矿坛器材友情交换
  • 网站的建设维护推广百度站长平台网站收录
  • 哪里有网站建设电话品牌策划设计
  • 个人网站 备案备注媒体软文发稿
  • 朝阳做网站推广管理
  • 淮安 做网站 app互联网推广是做什么的
  • 安徽服装网站建设免费网站制作软件平台
  • 网站源文件修改软文经典案例
  • 济南手机网站开发公司电话百度投放
  • 福州网站制作有限公司班级优化大师
  • 日日干天天做网站销售
  • 京东淘宝网站是怎么做的百度百科官网
  • 温州微网站制作哪里有域名ip查询查网址
  • 常州网站建设流程凡科建站下载
  • tap自助建站友情链接代码模板
  • 市网站制作培训网
  • 中建装饰集团有限公司官网seo sem推广
  • 做网站页面用什么武汉seo认可搜点网络
  • 济南做网站 推荐行知科技自己如何做链接推广
  • 怎么做同城购物网站百度推广登录平台网址
  • 网站做备案关停会显示什么网站推广的10种方法
  • 政府软件开发报价明细陕西网站seo
  • 通辽大柒网站建设有限公司百度指数的作用
  • 广东外贸网站建设如何免费制作自己的网站
  • 门户网站建设服务收费网络营销推广方式包括
  • 网站建设公司效益怎么样网址大全浏览器主页
  • 做图素材网站开哪个vip好色盲测试图片60张