当前位置: 首页 > wzjs >正文

内蒙古建设工程交易服务中心网站广告推广平台网站有哪些

内蒙古建设工程交易服务中心网站,广告推广平台网站有哪些,中学生做的网站,公司网站免费建立图像特征是计算机视觉中用于描述图像内容的关键信息,其提取质量直接影响后续的目标检测、分类和匹配等任务性能。本文将系统解析 全局与局部特征的核心概念,深入讲解 HOG(方向梯度直方图)与SIFT(尺度不变特征变换&…

图像特征是计算机视觉中用于描述图像内容的关键信息,其提取质量直接影响后续的目标检测、分类和匹配等任务性能。本文将系统解析 全局与局部特征的核心概念,深入讲解 HOG(方向梯度直方图)与SIFT(尺度不变特征变换)的算法原理,并提供MATLAB代码实现及典型应用场景分析。

1. 图像特征基础

1.1 定义与分类
  • 图像特征:能够表征图像中目标形状、纹理或结构的关键信息,可为像素值、几何结构或变换域系数的抽象表达。
  • 分类
    • 全局特征:描述图像整体属性(如颜色直方图、纹理统计量)。
    • 局部特征:捕捉图像中显著点或区域的结构(如角点、边缘、关键点)。
1.2 特征提取核心目标
  • 区分性:不同类别的特征差异显著
  • 鲁棒性:对光照变化、旋转、缩放等干扰不敏感
  • 高效性:计算速度快,适合实时处理

2. 方向梯度直方图(HOG)

2.1 算法原理

HOG通过局部区域的梯度方向分布描述物体形状,适用于行人检测、手势识别等整体轮廓分析任务。

处理流程
  1. 预处理:转为灰度图像,应用Gamma校正减少光照影响
  2. 计算梯度:使用Sobel算子求取水平和垂直方向的梯度幅值G和方向 

  1. 分块统计:将图像划分为细胞单元(Cell),统计每个单元的梯度方向直方图(通常9个区间)
  2. 块归一化:将相邻的2×2细胞单元合并为块(Block),对直方图进行L2归一化提升光照鲁棒性
  3. 特征拼接:所有块的直方图串联成最终的高维特征向量

%% 读取图像并预处理
I = imread('刘亦菲.jpg');        % 替换为你的图像路径
I = imresize(I, [128, 128]);     % 调整图像大小
I_gray = rgb2gray(I);           % 转换为灰度图%% 提取HOG特征
[hogFeatures, hogVisualization] = extractHOGFeatures(I_gray, ...'CellSize', [8 8], ...      % 每单元格大小'BlockSize', [2 2], ...     % 每块含2x2单元格'BlockOverlap', [1 1], ...  % 块间重叠单元格数'NumBins', 9);              % 梯度方向分9个区间%% 可视化结果
figure;
subplot(1,2,1);
imshow(I_gray);
title('原图');subplot(1,2,2);
imshow(I_gray); 
hold on;
plot(hogVisualization, 'Color','red'); % 叠加HOG特征
title('HOG特征可视化');
hold off;%% 输出特征维度
disp(['HOG特征维度: ', num2str(length(hogFeatures))]);

 

关键步骤说明

  1. 图像预处理

    • 调整尺寸 (imresize):统一输入尺寸,特征维度固定。
    • 转灰度图 (rgb2gray):HOG通常处理单通道梯度。
  2. 参数设置

    • CellSize: 8x8 像素的单元格统计直方图。
    • BlockSize: 2x2 单元格的块归一化直方图,提升光照鲁棒性。
    • NumBins: 将梯度方向量化为 9 个区间。
  3. 可视化

    • 红色线条表示梯度方向分布,反映物体轮廓。

3. 尺度不变特征变换(SIFT)

3.1 算法原理

SIFT通过检测并描述尺度空间的极值点,实现对旋转、缩放、亮度变化的不变性,适用于图像匹配、三维重建等任务。

处理流程
  1. 构建尺度空间:通过高斯金字塔生成不同尺度的图像
  2. 检测关键点:在高斯差分(DoG)金字塔中寻找局部极值点
  3. 精确定位:去除低对比度和边缘响应点(通过Hessian矩阵筛选)
  4. 方向分配:计算关键点主方向(利用邻域梯度方向直方图)
  5. 生成描述子:将关键点邻域划分为4×4子区域,统计每个区域的梯度方向直方图(总计128维向量)
3.2 MATLAB实现示例
% 读取图像并提取SIFT特征
img1 = rgb2gray(imread('img1.jpg'));
img2 = rgb2gray(imread('img2.jpg'));% 检测SIFT特征点
points1 = detectSIFTFeatures(img1);
points2 = detectSIFTFeatures(img2);% 提取特征描述子
[features1, valid_points1] = extractFeatures(img1, points1);
[features2, valid_points2] = extractFeatures(img2, points2);% 特征匹配
index_pairs = matchFeatures(features1, features2, 'MaxRatio', 0.6);
matched_points1 = valid_points1(index_pairs(:,1));
matched_points2 = valid_points2(index_pairs(:,2));% 可视化匹配结果
figure; imshowpair(img1,img2,'montage') 
title('原图(图1左侧,图2右侧)');
figure; 
showMatchedFeatures(img1, img2, matched_points1, matched_points2, 'montage');
title('SIFT特征匹配结果');

4. HOG与SIFT对比及应用场景

4.1 性能对比
指标HOGSIFT
特征维度较高(数千维度)高(每关键点128维)
鲁棒性对遮挡敏感对旋转、缩放、光照鲁棒
速度较慢(需构建多尺度空间)
适用任务目标检测(整体形状分析)图像匹配、三维重建(局部特征)
4.2 典型应用案例
  • HOG
    • 行人检测(配合SVM分类器)
    • 车牌识别中的字符定位
  • SIFT
    • 全景图像拼接(特征点匹配)
    • 基于内容的图像检索

http://www.dtcms.com/wzjs/295484.html

相关文章:

  • 杭州企业网站制作免费建站哪个网站最好
  • 免费网站制作教程关键词搜索
  • 医疗网站整站优化思路湖南网络优化服务
  • 上海内贸网站建设友情链接如何添加
  • 外贸建站wordpressweb3域名注册
  • 企业商务网站建设策划书竞价托管sem服务
  • 深圳市建委网站山东今日头条新闻
  • 地方门户网站开发方案收录查询
  • 小型手机网站建设企业网站排名查询工具
  • xrea WordPress限制连云港seo优化公司
  • 自己做一个外贸网站怎么样线上宣传渠道和宣传方式
  • 网站分析百度网络平台推广具体是怎么推广
  • 哈尔滨企业做网站北京百度seo公司
  • 成都网站建设开发公司哪家好搜索大全
  • 政府机关网站建设的依据免费的外贸网站推广方法
  • 网站建设海南百度竞价点击神器奔奔
  • 网站多语言建设方案百度浏览器官网在线使用
  • 哪个浏览器看b站视频好北京优化推广
  • 网站导航栏模板怎么做手机百度下载
  • 做外贸上阿里巴巴什么网站东莞百度搜索网站排名
  • 网站建设发布教程视频百度官网登录入口
  • 如何用dw制作个人网页常德网站seo
  • 做视频网站犯法吗韩国网站
  • 湟源县公司网站建设网页设计与制作学什么
  • qq群营销工具绍兴seo排名收费
  • 北京高端网站设计今日发生的重大新闻
  • 网站换关键词百度网页广告怎么做
  • 网站备案查询客服seo服务商技术好的公司
  • ppt模板免费下载古风吴中seo页面优化推广
  • 赣州做网站的seo课程培训学校