当前位置: 首页 > wzjs >正文

中学生做网站的软件软文写作经验是什么

中学生做网站的软件,软文写作经验是什么,如何做好阿里巴巴企业网站建设,vb做网站玩DAY 43 复习日 作业: kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化 浙大疏锦行 选择 Dogs vs Cats 数据集(Kaggle经典二分类问题) 完整代码实现 1. 设置环境并加载数据 import os import numpy as np …

DAY 43 复习日

作业:
kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化

@浙大疏锦行


选择 Dogs vs Cats 数据集(Kaggle经典二分类问题)

完整代码实现

1. 设置环境并加载数据

import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets, models
from torch.utils.data import DataLoader, random_split
import matplotlib.pyplot as plt
import cv2
from PIL import Image# 检查GPU可用性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
dataset = datasets.ImageFolder('./dogs-vs-cats/train', transform=transform)# 划分训练集和验证集(80%训练,20%验证)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)# 查看类别
print(f"Classes: {dataset.classes}")

2. 定义CNN模型(使用预训练的ResNet18)

class DogCatCNN(nn.Module):def __init__(self):super(DogCatCNN, self).__init__()# 使用预训练的ResNet18self.resnet = models.resnet18(pretrained=True)# 冻结所有卷积层参数(可选)for param in self.resnet.parameters():param.requires_grad = False# 替换最后的全连接层(适应我们的二分类问题)num_features = self.resnet.fc.in_featuresself.resnet.fc = nn.Sequential(nn.Linear(num_features, 256),nn.ReLU(),nn.Dropout(0.5),nn.Linear(256, 2)  # 2 classes: dog, cat)def forward(self, x):return self.resnet(x)model = DogCatCNN().to(device)

3. 训练函数

def train_model(model, criterion, optimizer, num_epochs=10):best_acc = 0.0for epoch in range(num_epochs):print(f'Epoch {epoch+1}/{num_epochs}')print('-' * 10)# 训练阶段model.train()running_loss = 0.0running_corrects = 0for inputs, labels in train_loader:inputs = inputs.to(device)labels = labels.to(device)optimizer.zero_grad()outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / len(train_loader.dataset)epoch_acc = running_corrects.double() / len(train_loader.dataset)print(f'Train Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')# 验证阶段model.eval()val_loss = 0.0val_corrects = 0with torch.no_grad():for inputs, labels in val_loader:inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)val_loss += loss.item() * inputs.size(0)val_corrects += torch.sum(preds == labels.data)val_loss = val_loss / len(val_loader.dataset)val_acc = val_corrects.double() / len(val_loader.dataset)print(f'Val Loss: {val_loss:.4f} Acc: {val_acc:.4f}\n')# 保存最佳模型if val_acc > best_acc:best_acc = val_acctorch.save(model.state_dict(), 'best_model.pth')print(f'Best val Acc: {best_acc:.4f}')return model# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
model = train_model(model, criterion, optimizer, num_epochs=10)

4. Grad-CAM可视化实现

class GradCAM:def __init__(self, model, target_layer):self.model = modelself.target_layer = target_layerself.gradients = Noneself.activations = None# 注册钩子target_layer.register_forward_hook(self.save_activations)target_layer.register_backward_hook(self.save_gradients)def save_activations(self, module, input, output):self.activations = outputdef save_gradients(self, module, grad_input, grad_output):self.gradients = grad_output[0]def forward(self, x):return self.model(x)def __call__(self, x, class_idx=None):# 前向传播output = self.forward(x)if class_idx is None:class_idx = torch.argmax(output, dim=1).item()# 反向传播self.model.zero_grad()one_hot = torch.zeros_like(output)one_hot[0][class_idx] = 1output.backward(gradient=one_hot, retain_graph=True)# 计算权重pooled_gradients = torch.mean(self.gradients, dim=[0, 2, 3])# 加权特征图activations = self.activations[0]for i in range(activations.size(0)):activations[i, :, :] *= pooled_gradients[i]# 生成热图heatmap = torch.mean(activations, dim=0).detach().cpu().numpy()heatmap = np.maximum(heatmap, 0)heatmap /= np.max(heatmap)return heatmapdef visualize_gradcam(model, image_path, target_layer):# 加载并预处理图像img = Image.open(image_path).convert('RGB')img_tensor = transform(img).unsqueeze(0).to(device)# 获取预测类别model.eval()with torch.no_grad():output = model(img_tensor)pred_class = torch.argmax(output, dim=1).item()# 创建Grad-CAMgrad_cam = GradCAM(model, target_layer)heatmap = grad_cam(img_tensor, pred_class)# 处理原始图像img_np = np.array(img.resize((224, 224)))img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)# 生成热图叠加heatmap = cv2.resize(heatmap, (img_np.shape[1], img_np.shape[0]))heatmap = np.uint8(255 * heatmap)heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)superimposed_img = heatmap * 0.4 + img_np * 0.6superimposed_img = np.clip(superimposed_img, 0, 255).astype(np.uint8)# 显示结果plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.imshow(cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB))plt.title(f'Original (Pred: {dataset.classes[pred_class]})')plt.axis('off')plt.subplot(1, 2, 2)plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))plt.title('Grad-CAM')plt.axis('off')plt.show()# 选择目标层(ResNet的最后一个卷积层)
target_layer = model.resnet.layer4[-1].conv2# 可视化示例
test_image_path = './dogs-vs-cats/train/dog.100.jpg' 
visualize_gradcam(model, test_image_path, target_layer)
http://www.dtcms.com/wzjs/291551.html

相关文章:

  • 个人网站 做导航360优化大师官方网站
  • 电商网站建设源码写软文
  • 上海青浦做网站运用搜索引擎营销的案例
  • 微信小程序网站建设公司广东省人大常委会
  • 青岛城乡建设委员会网站香港百度广告
  • 支付网站建设推广的会计分录真正免费建站
  • php玩具公司网站源码磁力搜索器 磁力猫
  • 网站做直播需要什么资质模拟搜索点击软件
  • 用dw做静态网站的步骤千峰培训可靠吗?
  • 三水 网站建设百度推广开户2400
  • 小企业网站建设的基础知识传统营销方式有哪些
  • 系统之家网站怎么做的seo个人博客
  • 历下区网站建设公司北京建站
  • wordpress门户网站模板引擎搜索有哪些
  • 做网站会什么问题武汉seo首页优化技巧
  • 网站开发过程说明怎么写免费seo网站推广在线观看
  • 网站建站企业seo关键词排名查询
  • 怎么评价网站做的好坏seo在线教学
  • 西安网站建设地址优化关键词软件
  • wordpress网站搬家图片路径营业推广名词解释
  • 奢侈品+网站建设方案深圳全网营销方案
  • 网站建设与网络营销网站seo排名优化工具
  • 用ps做零食网站模板seo网络推广招聘
  • 深圳做网站的好公司北京网站推广机构
  • 天河区进一步seo英文怎么读
  • 如何免费建网站赚钱中国网站排名前100
  • 手机应用开发湖南正规seo公司
  • b2b网站首页设计南宁seo推广优化
  • 做司法考试真题的网站网站排名优化培训课程
  • wordpress客户端APP广东seo推广贵不贵