当前位置: 首页 > wzjs >正文

福建建设人才网基础建站如何提升和优化

福建建设人才网,基础建站如何提升和优化,自己买服务器可以搭建网站吗,网站建设设计制数组合并 假设有 n 个长度为 k 的已排好序(升序)的数组,请设计数据结构和算法,将这 n 个数组合并到一个数组,且各元素按升序排列。即实现函数: void merge_arrays(const int* arr, int n, int k, int* out…

数组合并

假设有 n 个长度为 k 的已排好序(升序)的数组,请设计数据结构和算法,将这 n 个数组合并到一个数组,且各元素按升序排列。即实现函数:

 void merge_arrays(const int* arr, int n, int k, int* output);

其中 arr 为按行优先保存的 n 个长度都为 k 的数组,output 为合并后的按升序排列的数组,大小为 n×k。

时间要求(评分规则),当 n > k 时:

  • 满分:时间复杂度不超过 O(n×k×log(n))
  • 75分:时间复杂度不超过 O(n×k×log(n)×k)
  • 59分:其它,如:时间复杂度为 O(n2×k2) 时。
#include<stdio.h>
#include<stdlib.h>void max_heapify(int* p, int i, int size) {int j = 2 * i + 1, t=p[i];while (j <= size - 1) {if (j + 1 <= size - 1 && p[j] < p[j + 1])j = j + 1;if (p[j] > t) {p[i] = p[j];i = j;j = 2 * i + 1;}else break;}p[i] = t;
}//假设i之后都是大根堆,调整i使从i开始都是大根堆void merge_arrays(const int* arr, int n,int k,int* output) {int size=n*k;int x, i, *array;array = (int*)malloc(size * sizeof(int));for (i = 0; i <= size - 1; i++) {array[i] = arr[i];}for (i=size/2-1; i >=0 ; i--) {max_heapify(array, i, size);}//将整个堆大根堆化for (i = size-1; i >= 1; --i) {x = array[0];array[0] = array[i];array[i] = x;max_heapify(array, 0, i);}for (i = 0; i <= size - 1; i++) {output[i] = array[i];}}

 

堆化

二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。

“最小堆”的定义如下:

typedef struct _otherInfo
{int i;int j;
}OtherInfo;typedef struct _minHeapNode
{int value;OtherInfo otherInfo;
}MinHeapNode, *PMinHeapNode;typedef struct _minPQ {PMinHeapNode heap_array; // 指向堆元素数组int heap_size; // 当前堆中的元素个数int capacity;  //堆数组的大小
}MinHeap, *PMinHeap;

请实现最小堆的“堆化”函数:

void min_heapify(PMinHeap pq, int i);

其中 pq指向堆,i 为堆元素在数组中的下标。该函数假设元素i对应的子树都已经是最小堆(符合最小堆的要求),但元素i为根的子树并不是最小堆,min_heapify将对元素i及其子树的各结点进行调整,使其为一个最小堆。

(注:假设辅助函数 left、right、parent 和 swap_node 已正确实现,min_heapify 函数可直接使用。)

#include <stdio.h>
#include <stdlib.h>
#include "minbinheap.h"void min_heapify(PMinHeap pq, int i){int j = 2 * i + 1;MinHeapNode* p = pq->heap_array;while (j <= pq->heap_size - 1){//j为最小值的堆if (p[j + 1].value < p[j].value)j = j + 1;if (p[j].value < p[i].value) {swap_node(&p[j], &p[i]);i = j;j = 2 * i + 1;}else return;}
}

堆元素插入

二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。

“最小堆”的定义如下:

typedef struct _otherInfo
{int i;int j;
}OtherInfo;typedef struct _minHeapNode
{int value;OtherInfo otherInfo;
}MinHeapNode, *PMinHeapNode;typedef struct _minPQ {PMinHeapNode heap_array; // 指向堆元素数组int heap_size; // 当前堆中的元素个数int capacity;  //堆数组的大小
}MinHeap, *PMinHeap;

请实现最小堆的元素插入函数:

bool heap_insert_value(PMinHeap pq, int value);

其中 pq指向堆,value 为要插入的堆元素。

(注:假设辅助函数 parent 和 swap_node 已正确实现,heap_insert_value 函数可直接使用。)

 

#include <stdio.h>
#include <stdlib.h>
#include "minbinheap.h"
#define H pq->heap_arraybool heap_insert_value(PMinHeap pq, int value){if(pq->heap_size==pq->capacity)return false;int i=pq->heap_size;H[i].value=value;while(i!=0&&H[i].value<H[parent(i)].value){swap_node(&H[i],&H[parent(i)]);i=parent(i);}pq->heap_size++;return true;
}

 堆初始化

二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。

“最小堆”的定义如下:

typedef struct _otherInfo
{int i;int j;
}OtherInfo;typedef struct _minHeapNode
{int value;OtherInfo otherInfo;
}MinHeapNode, *PMinHeapNode;typedef struct _minPQ {PMinHeapNode heap_array; // 指向堆元素数组int heap_size; // 当前堆中的元素个数int capacity;  //堆数组的大小
}MinHeap, *PMinHeap;

请实现最小堆的初始化函数:

void init_min_heap(PMinHeap pq, int capacity);

其中 pq指向堆,capacity为堆元素数组的初始化大小。

#include <stdio.h>
#include <stdlib.h>
#include "minbinheap.h"//pq指向堆,capacity为堆元素数组的初始化大小
void init_min_heap(PMinHeap pq, int capacity){pq->capacity = capacity;pq->heap_size = 0;pq->heap_array = (PMinHeapNode)malloc(sizeof(MinHeapNode) * pq->capacity);return;
}

堆辅助函数 

二叉堆是完全二叉树或者是近似完全二叉树。二叉堆有两种:最大堆和最小堆。

  • 最大堆(大顶堆):父结点的键值总是大于或等于任何一个子节点的键值,即最大的元素在顶端;
  • 最小堆(小顶堆):父结点的键值总是小于或等于任何一个子节点的键值,即最小的元素在顶端。
  • 二叉堆子结点的大小与其左右位置无关。

二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。

“最小堆”的定义如下:

typedef struct _otherInfo
{int i;int j;
}OtherInfo;typedef struct _minHeapNode
{int value;OtherInfo otherInfo;
}MinHeapNode, *PMinHeapNode;typedef struct _minPQ {PMinHeapNode heap_array; // 指向堆元素数组int heap_size; // 当前堆中的元素个数int capacity;  //堆数组的大小
}MinHeap, *PMinHeap;

请实现最小堆的四个辅助函数:

int parent(int i); //返回堆元素数组下标为 i 的结点的父结点下标
int left(int i);  //返回堆元素数组下标为 i 的结点的左子结点下标
int right(int i);  //返回堆元素数组下标为 i 的结点的右子结点下标
void swap_node(MinHeapNode *x, MinHeapNode *y);  //交换两个堆元素的值
#include <stdio.h>
#include <stdlib.h>
#include "minbinheap.h" // 请不要删除,否则检查不通过
int parent(int i) {
return (i-1) / 2;
}
int left(int i){
return 2 * i + 1;
}
int right(int j) {
return 2 * j + 2;
}
void swap_node(MinHeapNode* x, MinHeapNode* y) {
int value;
int i, j;
value = y->value;
i = y->otherInfo.i;
j = y->otherInfo.j;
y->value = x->value;
y->otherInfo.i = x->otherInfo.i;
y->otherInfo.j = x->otherInfo.j;
x->value = value;
x->otherInfo.i = i;
x->otherInfo.j = j;}

 

 

http://www.dtcms.com/wzjs/288701.html

相关文章:

  • 重庆永川网站建设报价百度认证平台
  • 国外网站设计理念湖北seo公司
  • 深圳价格实惠的网站建设公司推广平台排行榜app
  • 小黄人seo网站优化外包顾问
  • 国内做化妆刷的比较好的网站网站的推广
  • 珠海建网站专业公司网络平台推广方案
  • 大连网站建设工作室上海企业网站推广
  • 一键网站提交seo网站关键词优化机构
  • 泰州企业自助建站网站不收录怎么解决
  • 做网站买什么香港服务器游戏推广是什么工作
  • 欧美 电台 网站模板4完整html网页代码案例
  • 要学好网站开发要会什么宁波网站制作与推广价格
  • 可以做设计赚钱的网站seoul是哪个国家
  • 网站开发的基本知识网址链接
  • 自己网站联系电话修改怎么做苏州seo公司
  • 免费的免抠图素材网站网络营销主要干什么
  • 目前国内做情趣最好的网站成人用品网店进货渠道
  • 烟台哪里做网站百度seo怎么提高排名
  • 北京时间网站建设网络营销推广方案3篇
  • 哪里有营销型网站百度排名
  • supercell账号注册网站今天热点新闻事件
  • 嘉兴做网站公司晚上网站推广软件免费版
  • 有什么做木工的网站苏州优化排名seo
  • 网站经营方案郑州做网站推广电话
  • 要接入广告做啥网站发帖子最好的几个网站
  • 企业宣传片怎么拍沈阳专业网站seo推广
  • 免费html网站模板下载深圳百度推广公司
  • 凡科怎么做网站黄石seo诊断
  • 企业网站优秀案例游戏推广是什么工作
  • thinkphp只能做网站关键词规划师