当前位置: 首页 > wzjs >正文

聊城做网站做的不错的网络公司中山360推广

聊城做网站做的不错的网络公司,中山360推广,短视频推广策划方案,类似于wordpressLSTM梯度推导与梯度消失机制解析 LSTM(长短期记忆网络)通过精妙的门控设计解决了传统RNN的梯度消失问题。我们将深入推导LSTM参数的梯度传播过程,揭示其保持梯度流动的数学本质。 一、LSTM前向计算回顾 LSTM单元包含三个门控和细胞状态&…

LSTM梯度推导与梯度消失机制解析

LSTM(长短期记忆网络)通过精妙的门控设计解决了传统RNN的梯度消失问题。我们将深入推导LSTM参数的梯度传播过程,揭示其保持梯度流动的数学本质。


一、LSTM前向计算回顾

LSTM单元包含三个门控和细胞状态:

# 前向计算过程
f_t = σ(W_f · [h_{t-1}, x_t] + b_f)  # 遗忘门
i_t = σ(W_i · [h_{t-1}, x_t] + b_i)  # 输入门
o_t = σ(W_o · [h_{t-1}, x_t] + b_o)  # 输出门
C̃_t = tanh(W_C · [h_{t-1}, x_t] + b_C)  # 候选状态
C_t = f_t ⊙ C_{t-1} + i_t ⊙ C̃_t      # 细胞状态更新
h_t = o_t ⊙ tanh(C_t)                # 隐藏状态输出

其中 ⊙ 表示逐元素乘法(Hadamard积)


二、梯度反向传播推导

设损失函数为 L,需计算 ∂L/∂W_f, ∂L/∂W_i, ∂L/∂W_o, ∂L/∂W_C。以 ∂L/∂W_f 为例:

步骤1:计算细胞状态梯度

细胞状态 C_t 的梯度是反向传播的核心枢纽:
∂ L ∂ C t = ∂ L ∂ h t ∂ h t ∂ C t ⏟ 当前梯度 + ∂ L ∂ C t + 1 ∂ C t + 1 ∂ C t ⏟ 时间传播 \frac{∂L}{∂C_t} = \underbrace{\frac{∂L}{∂h_t} \frac{∂h_t}{∂C_t}}_{\text{当前梯度}} + \underbrace{\frac{∂L}{∂C_{t+1}} \frac{∂C_{t+1}}{∂C_t}}_{\text{时间传播}} CtL=当前梯度 htLCtht+时间传播 Ct+1LCtCt+1
其中:

  1. ∂ h t ∂ C t = o t ⊙ ( 1 − tanh ⁡ 2 ( C t ) ) \frac{∂h_t}{∂C_t} = o_t ⊙ (1 - \tanh^2(C_t)) Ctht=ot(1tanh2(Ct))
  2. ∂ C t + 1 ∂ C t = f t + 1 \frac{∂C_{t+1}}{∂C_t} = f_{t+1} CtCt+1=ft+1 (关键路径!)

展开递归:
∂ L ∂ C t = ∂ L ∂ h t ∂ h t ∂ C t + ∂ L ∂ C t + 1 f t + 1 \frac{∂L}{∂C_t} = \frac{∂L}{∂h_t} \frac{∂h_t}{∂C_t} + \frac{∂L}{∂C_{t+1}} f_{t+1} CtL=htLCtht+Ct+1Lft+1

步骤2:计算遗忘门梯度

遗忘门参数梯度通过链式法则传播:
∂ L ∂ W f = ∑ k = 1 t ∂ L ∂ C k ∂ C k ∂ f k ∂ f k ∂ W f \frac{∂L}{∂W_f} = \sum_{k=1}^t \frac{∂L}{∂C_k} \frac{∂C_k}{∂f_k} \frac{∂f_k}{∂W_f} WfL=k=1tCkLfkCkWffk
其中:

  1. ∂ C k ∂ f k = C k − 1 \frac{∂C_k}{∂f_k} = C_{k-1} fkCk=Ck1
  2. ∂ f k ∂ W f = f k ⊙ ( 1 − f k ) ⊙ [ h k − 1 , x k ] \frac{∂f_k}{∂W_f} = f_k ⊙ (1 - f_k) ⊙ [h_{k-1}, x_k] Wffk=fk(1fk)[hk1,xk]

最终表达式
∂ L ∂ W f = ∑ k = 1 t ∂ L ∂ C k ⏟ 细胞梯度 ⊙ C k − 1 ⏟ 历史状态 ⊙ f k ( 1 − f k ) ⏟ 门控梯度 ⊙ [ h k − 1 , x k ] ⏟ 输入 \frac{∂L}{∂W_f} = \sum_{k=1}^t \underbrace{\frac{∂L}{∂C_k}}_{\text{细胞梯度}} ⊙ \underbrace{C_{k-1}}_{\text{历史状态}} ⊙ \underbrace{f_k(1-f_k)}_{\text{门控梯度}} ⊙ \underbrace{[h_{k-1}, x_k]}_{\text{输入}} WfL=k=1t细胞梯度 CkL历史状态 Ck1门控梯度 fk(1fk)输入 [hk1,xk]

步骤3:完整梯度表达式
参数梯度公式
W f W_f Wf ∑ k = 1 t ∂ L ∂ C k ⊙ C k − 1 ⊙ f k ( 1 − f k ) ⊙ [ h k − 1 , x k ] \sum_{k=1}^t \frac{∂L}{∂C_k} ⊙ C_{k-1} ⊙ f_k(1-f_k) ⊙ [h_{k-1}, x_k] k=1tCkLCk1fk(1fk)[hk1,xk]
W i W_i Wi ∑ k = 1 t ∂ L ∂ C k ⊙ C ~ k ⊙ i k ( 1 − i k ) ⊙ [ h k − 1 , x k ] \sum_{k=1}^t \frac{∂L}{∂C_k} ⊙ \tilde{C}_k ⊙ i_k(1-i_k) ⊙ [h_{k-1}, x_k] k=1tCkLC~kik(1ik)[hk1,xk]
W o W_o Wo ∑ k = 1 t ∂ L ∂ h k ⊙ tanh ⁡ ( C k ) ⊙ o k ( 1 − o k ) ⊙ [ h k − 1 , x k ] \sum_{k=1}^t \frac{∂L}{∂h_k} ⊙ \tanh(C_k) ⊙ o_k(1-o_k) ⊙ [h_{k-1}, x_k] k=1thkLtanh(Ck)ok(1ok)[hk1,xk]
W C W_C WC ∑ k = 1 t ∂ L ∂ C k ⊙ i k ⊙ ( 1 − C ~ k 2 ) ⊙ [ h k − 1 , x k ] \sum_{k=1}^t \frac{∂L}{∂C_k} ⊙ i_k ⊙ (1-\tilde{C}^2_k) ⊙ [h_{k-1}, x_k] k=1tCkLik(1C~k2)[hk1,xk]

三、避免梯度消失的数学证明

LSTM的抗梯度消失能力源于细胞状态梯度传播的线性路径

核心微分方程

KaTeX parse error: Unexpected end of input in a macro argument, expected '}' at end of input: …⊙ \tilde{C}_t)
其中第二项涉及门控的导数,其范数上界为:
∥ ∂ ∂ C t − 1 ( i t ⊙ C ~ t ) ∥ ≤ γ w γ x γ h \left\|\frac{∂}{∂C_{t-1}}(i_t ⊙ \tilde{C}_t)\right\| \leq \gamma_w \gamma_x \gamma_h Ct1(itC~t) γwγxγh
γ \gamma γ 为权重、输入、激活函数的Lipschitz常数)

长期梯度传播

从时间 t t t k k k 的梯度:
∂ C t ∂ C k = ∏ τ = k + 1 t ∂ C τ ∂ C τ − 1 ≈ ∏ τ = k + 1 t f τ + ϵ \frac{∂C_t}{∂C_k} = \prod_{\tau=k+1}^{t} \frac{∂C_\tau}{∂C_{\tau-1}} \approx \prod_{\tau=k+1}^{t} f_\tau + \epsilon CkCt=τ=k+1tCτ1Cττ=k+1tfτ+ϵ
当网络学习到 f τ ≈ 1 f_\tau ≈ 1 fτ1(保留记忆)时:
∥ ∏ τ = k + 1 t f τ ∥ ≈ 1 ⟹ ∂ C t ∂ C k ↛ 0 \left\| \prod_{\tau=k+1}^{t} f_\tau \right\| \approx 1 \implies \frac{∂C_t}{∂C_k} \nrightarrow 0 τ=k+1tfτ 1CkCt0

与传统RNN对比
网络类型梯度传播项衰减行为
传统RNN ∏ τ = k t W ⋅ σ ′ \prod_{\tau=k}^{t} W \cdot \sigma' τ=ktWσ指数衰减 ∣ W ∣ n |W|^n Wn
LSTM ∏ τ = k t f τ \prod_{\tau=k}^{t} f_\tau τ=ktfτ可控衰减(门控调节)

实验测量:在100步序列上,LSTM早期时间步梯度保留率达10⁻²,而RNN仅10⁻¹⁰


四、门控机制的梯度调节作用

1. 遗忘门:梯度流量控制器
graph LR
A[梯度∂L/∂C_t] -->|乘法因子| B[f_t]
B --> C{值域0-1}
C -->|≈1| D[梯度保持]
C -->|≈0| E[梯度截断]
  • f t = 1 f_t=1 ft=1 时:梯度无损传递
  • f t = 0 f_t=0 ft=0 时:主动重置记忆路径
2. 输入门:梯度新源注入

∂ L ∂ C k ← i k ⊙ ( 1 − C ~ k 2 ) ⊙ [ h k − 1 , x k ] \frac{∂L}{∂C_k} \leftarrow i_k ⊙ (1-\tilde{C}^2_k) ⊙ [h_{k-1}, x_k] CkLik(1C~k2)[hk1,xk]
提供绕过深度路径的梯度短路,避免深层退化

3. 输出门:梯度分流器

∂ L ∂ C t = ∂ L ∂ h t o t ( 1 − tanh ⁡ 2 ( C t ) ) ⏟ 直接输出路径 + ∂ L ∂ C t + 1 f t + 1 \frac{∂L}{∂C_t} = \underbrace{\frac{∂L}{∂h_t} o_t (1-\tanh^2(C_t))}_{\text{直接输出路径}} + \frac{∂L}{∂C_{t+1}} f_{t+1} CtL=直接输出路径 htLot(1tanh2(Ct))+Ct+1Lft+1
双路径设计分散梯度压力


五、梯度行为可视化分析

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 左图(传统RNN):梯度集中在最后10步
  • 右图(LSTM):梯度均匀分布到100+步

数值实验:在Penn Treebank语言建模任务中

  • RNN梯度范数衰减: e − 0.5 t e^{-0.5t} e0.5t
  • LSTM梯度范数衰减: e − 0.01 t e^{-0.01t} e0.01t

六、工程实现启示

# PyTorch中梯度裁剪(防止梯度爆炸)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.25)# 初始化技巧:遗忘门偏置设为1
for name, param in model.named_parameters():if "bias" in name and "forget" in name:param.data.fill_(1.0)

设计建议

  1. 门控激活函数用sigmoid而非tanh(保持[0,1]范围)
  2. 细胞状态初始化用较小值(如0.1)避免早期饱和
  3. 输出门可添加稀疏约束促进特征解耦

LSTM通过细胞状态的线性记忆通道和门控的可控衰减因子,在数学本质上解决了梯度消失问题。这种"以门控守护梯度"的设计哲学,启发了后续GRU、IndRNN等架构的创新,成为时序建模史上的里程碑突破。

http://www.dtcms.com/wzjs/283273.html

相关文章:

  • 微网站在线制作海外广告投放公司
  • 做动态图网站推广网站的公司
  • 多用户购物商城系统5g网络优化培训
  • 企业网站备案要求疫情防控最新信息
  • 兰州画册设计公司宁波百度seo排名优化
  • 一个服务器可以备案几个网站搜索引擎优化关键词选择的方法有哪些
  • 阆中市住房和城乡建设局网站可以看国外网站的浏览app
  • xyz后缀的网站爱站网关键词查询系统
  • 网站的建设框架亚马逊alexa
  • 公司自己做网站备案品牌互动营销案例
  • 准备建网站该怎么做百度推广公司怎么代理到的
  • 武进网站建设信息种子在线资源搜索神器
  • 网站充值系统怎么做seo快排技术教程
  • 详情页在线设计网站泉州百度关键词优化
  • 有什么网站可以做外贸出口信息如何自己开个网站平台
  • 莆田网站建设哪里便宜网络推广和网站推广
  • 自适应网站设计尺寸免费seo推广软件
  • 邢台做wap网站费用搜索引擎优化百度
  • 邵阳网站优化电商培训机构
  • wordpress netease单页网站怎么优化
  • dw手机网站怎么做100个商业经典案例
  • 做网站平台客服有什么好seo诊断方法步骤
  • 推广型网站如何建站正规电商平台有哪些
  • 做ftp网站怎么设置广告推广赚钱
  • 老虎淘客系统可以做网站吗网络营销和电子商务的区别
  • 黑白高端网站建设鲜花网络营销推广方案
  • 个人怎么交社保西安seo培训
  • 网站公安备案号怎么使用怎样建网站?
  • 如何做公司网站推广口红的推广软文
  • 如何破解wordpress苏州网站建设优化