当前位置: 首页 > wzjs >正文

房地产网站案例seo的基础优化

房地产网站案例,seo的基础优化,seo短视频网页入口,企业网站开发的文献综述✅ 今日目标 理解特征工程在数据分析和机器学习中的意义掌握常见特征类型的处理方式:数值型、类别型、时间型学习特征提取、转换、标准化、独热编码(One-Hot Encoding)等核心操作为后续建模任务做好特征准备工作 📚 一、什么是特…

✅ 今日目标

  • 理解特征工程在数据分析和机器学习中的意义
  • 掌握常见特征类型的处理方式:数值型、类别型、时间型
  • 学习特征提取、转换、标准化、独热编码(One-Hot Encoding)等核心操作
  • 为后续建模任务做好特征准备工作

📚 一、什么是特征工程?

特征工程是将原始数据转换为模型可学习的“特征向量”的过程,是机器学习效果好坏的核心因素之一。

常见任务包括:

  • 缺失值处理(已学)
  • 异常值处理(已学)
  • 数值归一化、标准化
  • 类别变量编码(如性别)
  • 日期拆解(年月日、周几等)
  • 派生变量(如是否及格、高分标签)

📘 二、类别变量编码(以“性别”为例)

1. Label Encoding(标签编码)

from sklearn.preprocessing import LabelEncoderdf = pd.read_csv("data/students_cleaned.csv")
le = LabelEncoder()
df["性别编码"] = le.fit_transform(df["性别"])
print(df[["性别", "性别编码"]].drop_duplicates())

⚠️ 只适用于有序类别;对无序分类不推荐(会引入数值大小误导)


2. One-Hot Encoding(独热编码)

df_onehot = pd.get_dummies(df, columns=["性别"])
print(df_onehot.head())

📘 三、数值特征转换

1. 标准化(Standardization)

from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
df["成绩标准化"] = scaler.fit_transform(df[["成绩"]])

2. 归一化(MinMax)

from sklearn.preprocessing import MinMaxScalerscaler = MinMaxScaler()
df["成绩归一化"] = scaler.fit_transform(df[["成绩"]])

📘 四、派生特征举例

# 是否及格(True/False → 1/0)
df["是否及格"] = df["成绩"] >= 60
df["是否及格数值"] = df["是否及格"].astype(int)# 成绩分段
df["成绩等级"] = pd.cut(df["成绩"], bins=[0, 60, 80, 100], labels=["不及格", "良", "优"])

📘 五、时间特征提取(如加入考试时间)

df["考试时间"] = pd.to_datetime("2024-06-01")
df["考试月"] = df["考试时间"].dt.month
df["考试周"] = df["考试时间"].dt.isocalendar().week
df["考试星期"] = df["考试时间"].dt.day_name()

🧪 今日练习建议(可生成脚本:feature_engineering.py

  1. 对性别进行标签编码和 One-Hot 编码

  2. 对成绩做归一化和标准化

  3. 派生字段:“是否及格数值”、“成绩等级”

  4. 添加时间字段并提取月、周、星期等信息

  5. 查看不同特征对模型潜在价值的分析(可选)

    代码示例:

    import pandas as pd
    import numpy as np
    from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler, MinMaxScaler
    import os# 加载数据
    data_path = "data/students_cleaned.csv"
    if not os.path.exists(data_path):raise FileNotFoundError("❌ 缺少数据文件:students_cleaned.csv,请先运行清洗脚本")df = pd.read_csv(data_path)
    print("✅ 原始数据预览:")
    print(df)# ================== 一、类别编码 ==================print("\n🔢 LabelEncoder 编码 '性别':")
    le = LabelEncoder()
    df["性别编码"] = le.fit_transform(df["性别"])
    print(df[["性别", "性别编码"]].drop_duplicates())print("\n🧊 One-Hot 编码 '性别':")
    df = pd.get_dummies(df, columns=["性别"])
    print(df)# ================== 二、数值特征转换 ==================print("\n📐 标准化成绩(StandardScaler):")
    scaler_std = StandardScaler()
    df["成绩_标准化"] = scaler_std.fit_transform(df[["成绩"]])print("\n📏 归一化成绩(MinMaxScaler):")
    scaler_minmax = MinMaxScaler()
    df["成绩_归一化"] = scaler_minmax.fit_transform(df[["成绩"]])# ================== 三、派生特征 ==================print("\n✅ 添加是否及格字段(布尔 + 数值):")
    df["是否及格"] = df["成绩"] >= 60
    df["是否及格_数值"] = df["是否及格"].astype(int)print("\n🎯 成绩等级分段:")
    df["成绩等级"] = pd.cut(df["成绩"], bins=[0, 60, 80, 100], labels=["不及格", "良", "优"])# ================== 四、时间特征处理 ==================print("\n🗓️ 添加考试时间字段:")
    df["考试时间"] = pd.to_datetime("2024-06-01")
    df["考试月"] = df["考试时间"].dt.month
    df["考试周"] = df["考试时间"].dt.isocalendar().week
    df["考试星期"] = df["考试时间"].dt.day_name()# ================== 五、保存结果 ==================os.makedirs("data/processed", exist_ok=True)
    output_path = "data/processed/students_featured.csv"
    df.to_csv(output_path, index=False)print(f"\n✅ 特征工程完成,已保存至:{output_path}")
    

    运行结果:

    ✅ 原始数据预览:姓名 性别    成绩   是否及格
    0  张三  男  88.0   True
    1  李四  女  78.0   True
    2  王五  男  59.0  False
    3  田七  女  78.0  False🔢 LabelEncoder 编码 '性别':性别  性别编码
    01
    10🧊 One-Hot 编码 '性别':姓名    成绩   是否及格  性别编码   性别_女   性别_男
    0  张三  88.0   True     1  False   True
    1  李四  78.0   True     0   True  False
    2  王五  59.0  False     1  False   True
    3  田七  78.0  False     0   True  False📐 标准化成绩(StandardScaler):📏 归一化成绩(MinMaxScaler):✅ 添加是否及格字段(布尔 + 数值):🎯 成绩等级分段:🗓️ 添加考试时间字段:✅ 特征工程完成,已保存至:data/processed/students_featured.csv
    

    students_featured.csv数据如图所示:
    在这里插入图片描述


🧾 今日总结

特征类型操作建议
数值型标准化 / 归一化 / 分段
类别型Label / OneHot 编码
时间型拆分年月日、周几、节假日等
衍生型等级、标签、数值映射

特征工程是数据科学的核心内容之一,好的特征往往胜过复杂模型。

http://www.dtcms.com/wzjs/282932.html

相关文章:

  • 网站建设及推广费用百度外推排名
  • 俄罗斯网站制作seo管理系统
  • 网站全屏轮播怎么做重庆企业免费建站
  • 做电影网站怎么样快速的网站设计制作
  • 图片制作视频用什么软件廊坊关键词优化平台
  • 如何对网站做引擎优化5g网络优化培训
  • 合肥做网站专家疫情防控最新信息
  • 网页设计与网站建设...seo关键词如何设置
  • 北京设计网站建设360搜索优化
  • wordpress 点击 代码优化大师官方
  • 网站上传到虚拟服务器百度搜索引擎优化方式
  • 网站程序安装阿里云域名注册
  • 云网站系统企业网站seo优化外包
  • 莱州哪有做网站的小程序制作流程
  • 网站首页动画模板可以直接进入网站的正能量
  • 做网站绘制蓝图的步骤西安百度推广排名
  • 网站建设属于什么资产免费百度seo引流
  • 评测网站做的那些条形图四川seo推广公司
  • 做网站需要的图片app拉新怎么做
  • 中国企业报集团是央企吗seo是什么意思电商
  • 西安哪个公司可以做网站韩国最新新闻
  • wordpress 免费注册网站seo好学吗
  • 黑龙江省建设集团有限公司网站seo整站优化哪家好
  • 娄底企业网站建设公司成都网站设计公司
  • 网站怎么做留言板凤山网站seo
  • 论坛建站哪个比较好郑州网络营销
  • 怎么自己编码做网站百度搜索引擎优化相关性评价
  • 营销型网站建设费用百度竞价排名系统
  • 河北邢台任泽区疫情培训行业seo整站优化
  • 做护理简历的网站seo优化一般包括哪些