当前位置: 首页 > wzjs >正文

贵阳优化网站建设湖南网站托管

贵阳优化网站建设,湖南网站托管,哈尔滨工业大学包机,东营会计信息网官网作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.util…

作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
import os
import time
from torchvision import models# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 定义通道注意力
class ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(nn.Linear(in_channels, in_channels // ratio, bias=False),nn.ReLU(),nn.Linear(in_channels // ratio, in_channels, bias=False))self.sigmoid = nn.Sigmoid()def forward(self, x):b, c, h, w = x.shapeavg_out = self.fc(self.avg_pool(x).view(b, c))max_out = self.fc(self.max_pool(x).view(b, c))attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)return x * attention## 空间注意力模块
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)pool_out = torch.cat([avg_out, max_out], dim=1)attention = self.conv(pool_out)return x * self.sigmoid(attention)## CBAM模块
class CBAM(nn.Module):def __init__(self, in_channels, ratio=16, kernel_size=7):super().__init__()self.channel_attn = ChannelAttention(in_channels, ratio)self.spatial_attn = SpatialAttention(kernel_size)def forward(self, x):x = self.channel_attn(x)x = self.spatial_attn(x)return x# 自定义ResNet18模型,插入CBAM模块
class ResNet18_CBAM(nn.Module):def __init__(self, num_classes=10, pretrained=True, cbam_ratio=16, cbam_kernel=7):super().__init__()# 加载预训练ResNet18self.backbone = models.resnet18(pretrained=pretrained) # 修改首层卷积以适应32x32输入self.backbone.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)self.backbone.maxpool = nn.Identity()  # 移除原始MaxPool层# 在每个残差块组后添加CBAM模块self.cbam_layer1 = CBAM(in_channels=64, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer2 = CBAM(in_channels=128, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer3 = CBAM(in_channels=256, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer4 = CBAM(in_channels=512, ratio=cbam_ratio, kernel_size=cbam_kernel)# 修改分类头self.backbone.fc = nn.Linear(in_features=512, out_features=num_classes)def forward(self, x):x = self.backbone.conv1(x)x = self.backbone.bn1(x)x = self.backbone.relu(x)  # [B, 64, 32, 32]# 第一层残差块 + CBAMx = self.backbone.layer1(x)  # [B, 64, 32, 32]x = self.cbam_layer1(x)# 第二层残差块 + CBAMx = self.backbone.layer2(x)  # [B, 128, 16, 16]x = self.cbam_layer2(x)# 第三层残差块 + CBAMx = self.backbone.layer3(x)  # [B, 256, 8, 8]x = self.cbam_layer3(x)# 第四层残差块 + CBAMx = self.backbone.layer4(x)  # [B, 512, 4, 4]x = self.cbam_layer4(x)# 全局平均池化 + 分类x = self.backbone.avgpool(x)  # [B, 512, 1, 1]x = torch.flatten(x, 1)  # [B, 512]x = self.backbone.fc(x)  # [B, num_classes]return x# ==================== 数据加载修改部分 ====================
# 数据集路径
train_data_dir = 'archive/Train_Test_Valid/Train'
test_data_dir = 'archive/Train_Test_Valid/test'# 获取类别数量
num_classes = len(os.listdir(train_data_dir))
print(f"检测到 {num_classes} 个类别")# 数据预处理
train_transform = transforms.Compose([transforms.RandomResizedCrop(32),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])test_transform = transforms.Compose([transforms.Resize(32),transforms.CenterCrop(32),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
train_dataset = datasets.ImageFolder(root=train_data_dir, transform=train_transform)
test_dataset = datasets.ImageFolder(root=test_data_dir, transform=test_transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)print(f"训练集大小: {len(train_dataset)} 张图片")
print(f"测试集大小: {len(test_dataset)} 张图片")# ==================== 训练函数 ====================
def set_trainable_layers(model, trainable_parts):print(f"\n---> 解冻以下部分并设为可训练: {trainable_parts}")for name, param in model.named_parameters():param.requires_grad = Falsefor part in trainable_parts:if part in name:param.requires_grad = Truebreakdef train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs):optimizer = Noneall_iter_losses, iter_indices = [], []train_acc_history, test_acc_history = [], []train_loss_history, test_loss_history = [], []for epoch in range(1, epochs + 1):epoch_start_time = time.time()# 动态调整学习率和冻结层if epoch == 1:print("\n" + "="*50 + "\n🚀 **阶段 1:训练注意力模块和分类头**\n" + "="*50)set_trainable_layers(model, ["cbam", "backbone.fc"])optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)elif epoch == 6:print("\n" + "="*50 + "\n✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**\n" + "="*50)set_trainable_layers(model, ["cbam", "backbone.fc", "backbone.layer3", "backbone.layer4"])optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)elif epoch == 21:print("\n" + "="*50 + "\n🛰️ **阶段 3:解冻所有层,进行全局微调**\n" + "="*50)for param in model.parameters(): param.requires_grad = Trueoptimizer = optim.Adam(model.parameters(), lr=1e-5)# 训练循环model.train()running_loss, correct, total = 0.0, 0, 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append((epoch - 1) * len(train_loader) + batch_idx + 1)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_loss_history.append(epoch_train_loss)train_acc_history.append(epoch_train_acc)# 测试循环model.eval()test_loss, correct_test, total_test = 0, 0, 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_loss_history.append(epoch_test_loss)test_acc_history.append(epoch_test_acc)print(f'Epoch {epoch}/{epochs} 完成 | 耗时: {time.time() - epoch_start_time:.2f}s | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘图函数def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend(); plt.grid(True)plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend(); plt.grid(True)plt.tight_layout()plt.show()print("\n训练完成! 开始绘制结果图表...")plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc# ==================== 主程序 ====================
model = ResNet18_CBAM(num_classes=num_classes).to(device)
criterion = nn.CrossEntropyLoss()
epochs = 50print("开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...")
final_accuracy = train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# 保存模型
torch.save(model.state_dict(), 'resnet18_cbam_custom.pth')
print("模型已保存为: resnet18_cbam_custom.pth")

使用设备: cpu
检测到 6 个类别
训练集大小: 900 张图片
测试集大小: 40 张图片
d:\anaconda\Lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  warnings.warn(
d:\anaconda\Lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.
  warnings.warn(msg)
开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...

==================================================
🚀 **阶段 1:训练注意力模块和分类头**
==================================================

---> 解冻以下部分并设为可训练: ['cbam', 'backbone.fc']
Epoch 1/50 完成 | 耗时: 17.97s | 训练准确率: 19.89% | 测试准确率: 12.50%
Epoch 2/50 完成 | 耗时: 16.93s | 训练准确率: 31.22% | 测试准确率: 35.00%
Epoch 3/50 完成 | 耗时: 17.15s | 训练准确率: 35.56% | 测试准确率: 35.00%
Epoch 4/50 完成 | 耗时: 17.36s | 训练准确率: 37.11% | 测试准确率: 52.50%
Epoch 5/50 完成 | 耗时: 17.60s | 训练准确率: 37.56% | 测试准确率: 50.00%

==================================================
✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**
==================================================

---> 解冻以下部分并设为可训练: ['cbam', 'backbone.fc', 'backbone.layer3', 'backbone.layer4']
Epoch 6/50 完成 | 耗时: 19.17s | 训练准确率: 45.00% | 测试准确率: 60.00%
Epoch 7/50 完成 | 耗时: 19.26s | 训练准确率: 52.78% | 测试准确率: 67.50%
Epoch 8/50 完成 | 耗时: 19.21s | 训练准确率: 56.22% | 测试准确率: 62.50%
Epoch 9/50 完成 | 耗时: 19.33s | 训练准确率: 60.22% | 测试准确率: 72.50%
Epoch 10/50 完成 | 耗时: 19.32s | 训练准确率: 62.33% | 测试准确率: 72.50%
Epoch 11/50 完成 | 耗时: 19.34s | 训练准确率: 62.33% | 测试准确率: 70.00%
Epoch 12/50 完成 | 耗时: 29.18s | 训练准确率: 65.78% | 测试准确率: 72.50%
Epoch 13/50 完成 | 耗时: 37.93s | 训练准确率: 67.11% | 测试准确率: 72.50%
Epoch 14/50 完成 | 耗时: 36.39s | 训练准确率: 69.00% | 测试准确率: 75.00%
Epoch 15/50 完成 | 耗时: 37.31s | 训练准确率: 71.22% | 测试准确率: 72.50%
Epoch 16/50 完成 | 耗时: 36.51s | 训练准确率: 71.89% | 测试准确率: 72.50%
Epoch 17/50 完成 | 耗时: 24.59s | 训练准确率: 75.89% | 测试准确率: 67.50%
Epoch 18/50 完成 | 耗时: 36.65s | 训练准确率: 75.00% | 测试准确率: 70.00%
Epoch 19/50 完成 | 耗时: 20.12s | 训练准确率: 74.33% | 测试准确率: 67.50%
Epoch 20/50 完成 | 耗时: 19.23s | 训练准确率: 75.44% | 测试准确率: 70.00%

==================================================
🛰️ **阶段 3:解冻所有层,进行全局微调**
==================================================
Epoch 21/50 完成 | 耗时: 22.10s | 训练准确率: 76.78% | 测试准确率: 70.00%
Epoch 22/50 完成 | 耗时: 22.77s | 训练准确率: 78.33% | 测试准确率: 72.50%
Epoch 23/50 完成 | 耗时: 22.42s | 训练准确率: 78.67% | 测试准确率: 70.00%
Epoch 24/50 完成 | 耗时: 38.86s | 训练准确率: 77.33% | 测试准确率: 70.00%
Epoch 25/50 完成 | 耗时: 33.47s | 训练准确率: 80.11% | 测试准确率: 67.50%
Epoch 26/50 完成 | 耗时: 44.94s | 训练准确率: 78.11% | 测试准确率: 70.00%
Epoch 27/50 完成 | 耗时: 45.14s | 训练准确率: 78.56% | 测试准确率: 72.50%
Epoch 28/50 完成 | 耗时: 43.69s | 训练准确率: 79.22% | 测试准确率: 70.00%
Epoch 29/50 完成 | 耗时: 22.11s | 训练准确率: 78.67% | 测试准确率: 67.50%
Epoch 30/50 完成 | 耗时: 23.66s | 训练准确率: 81.11% | 测试准确率: 72.50%
Epoch 31/50 完成 | 耗时: 21.64s | 训练准确率: 77.22% | 测试准确率: 67.50%
Epoch 32/50 完成 | 耗时: 21.86s | 训练准确率: 79.33% | 测试准确率: 70.00%
Epoch 33/50 完成 | 耗时: 21.48s | 训练准确率: 83.89% | 测试准确率: 65.00%
Epoch 34/50 完成 | 耗时: 23.06s | 训练准确率: 81.44% | 测试准确率: 57.50%
Epoch 35/50 完成 | 耗时: 239.58s | 训练准确率: 79.89% | 测试准确率: 70.00%
Epoch 36/50 完成 | 耗时: 35.76s | 训练准确率: 79.11% | 测试准确率: 70.00%
Epoch 37/50 完成 | 耗时: 22.56s | 训练准确率: 83.00% | 测试准确率: 72.50%
Epoch 38/50 完成 | 耗时: 22.46s | 训练准确率: 82.00% | 测试准确率: 72.50%
Epoch 39/50 完成 | 耗时: 22.68s | 训练准确率: 81.78% | 测试准确率: 70.00%
Epoch 40/50 完成 | 耗时: 22.62s | 训练准确率: 84.44% | 测试准确率: 72.50%
Epoch 41/50 完成 | 耗时: 22.75s | 训练准确率: 80.22% | 测试准确率: 70.00%
Epoch 42/50 完成 | 耗时: 23.17s | 训练准确率: 82.56% | 测试准确率: 72.50%
Epoch 43/50 完成 | 耗时: 23.40s | 训练准确率: 81.78% | 测试准确率: 70.00%
Epoch 44/50 完成 | 耗时: 23.70s | 训练准确率: 81.44% | 测试准确率: 70.00%
Epoch 45/50 完成 | 耗时: 23.79s | 训练准确率: 81.11% | 测试准确率: 70.00%
Epoch 46/50 完成 | 耗时: 23.40s | 训练准确率: 81.56% | 测试准确率: 70.00%
Epoch 47/50 完成 | 耗时: 22.86s | 训练准确率: 83.22% | 测试准确率: 72.50%
Epoch 48/50 完成 | 耗时: 23.04s | 训练准确率: 81.89% | 测试准确率: 72.50%
Epoch 49/50 完成 | 耗时: 22.77s | 训练准确率: 84.11% | 测试准确率: 67.50%
Epoch 50/50 完成 | 耗时: 22.83s | 训练准确率: 83.00% | 测试准确率: 72.50%

训练完成! 开始绘制结果图表...

 @浙大疏锦行

http://www.dtcms.com/wzjs/280100.html

相关文章:

  • 江苏扬州疫情最新消息今天封城了网络优化工程师需要学什么
  • 四平市住房和城乡建设部网站chrome网页版入口
  • 自适应网站能单独做移动端吗拉新平台
  • 微商城系统源码外贸建站优化
  • 微商软件自助下单平台seo关键词排优化软件
  • 福鼎建设局网站首页优化疫情政策
  • 浙江省旅游企业网站建设情况百度保障客服电话
  • 59一起做网站顾问
  • 搜索引擎优化营销windows优化大师是官方的吗
  • 那个网站可以做司考真题网站宣传费用
  • 开封市建设中专继续教育网站手机网站关键词seo
  • 贵大网站建设多少钱网站新域名查询
  • 怎么用网页源码做网站seo学途论坛网
  • wordpress设置用户注册郑州seo管理
  • 网站开发 wenzhou怎么找需要做推广的公司
  • 音乐网站设计怎么做构建新发展格局
  • 小程序源码库天津百度seo排名优化软件
  • 小程序商店网址seo就业前景
  • 建网站 3年服务关键词网站排名查询
  • 内蒙古知名网站建设百度高级搜索入口
  • app要有网站做基础知识2021谷歌搜索入口
  • 台州网站专业制作石家庄百度快照优化排名
  • 广东智慧团建网站登录关键词全网搜索指数
  • 女孩子学广告设计好找工作吗seo站长工具 论坛
  • 二手房网站制作教程财经新闻最新消息
  • 河北 石家庄 网站建设国内免费建网站
  • 黄石网站设计公司平面设计培训
  • 为学校建设网站广东新闻今日最新闻
  • 如何做设计网站页面百度网站下载安装
  • 网站的搜索功能怎么做最好的免费信息发布平台