当前位置: 首页 > wzjs >正文

可信网站认证好处百度广告搜索推广

可信网站认证好处,百度广告搜索推广,Wordpress网站删除多余主题,软文推广案例500字使用COMSOL生成数据与DeepONet学习静电场电势分布 1 引言 静电场仿真在电容式传感器、静电驱动MEMS、高压绝缘设计等领域具有重要应用价值。传统数值方法(如有限元法)虽精度高,但反复求解复杂边界条件或几何变化问题时计算成本巨大。近年来,算子学习框架的兴起为物理场快…

使用COMSOL生成数据与DeepONet学习静电场电势分布

1 引言

静电场仿真在电容式传感器、静电驱动MEMS、高压绝缘设计等领域具有重要应用价值。传统数值方法(如有限元法)虽精度高,但反复求解复杂边界条件或几何变化问题时计算成本巨大。近年来,算子学习框架的兴起为物理场快速预测提供了新范式。DeepONet作为代表性架构,能够学习从函数空间到函数空间的映射关系。本文将详细介绍如何利用COMSOL Multiphysics生成静电场仿真数据,并构建DeepONet模型学习边界电势函数到全场电势分布的映射关系,实现接近实时的静电场预测。


2 理论基础

2.1 静电场问题描述

静电场满足拉普拉斯方程或泊松方程:

\nabla \cdot (\epsilon \nabla \phi) = -\rho

其中:

  • \(\phi\) 为电势 (V)
  • \(\epsilon\) 为介电常数 (F/m)
  • \(\rho\) 为电荷密度 (C/m³)

在无源区域简化为:

\nabla^2 \phi = 0

边界条件通常包括:

  • 狄利克雷边界\(\phi|_{\Gamma_D} = g_D\)
  • 诺依曼边界\(\left. \frac{\partial \phi}{\partial n} \right|_{\Gamma_N} = g_N\)

2.2 DeepONet 架构原理

DeepONet的核心思想是将算子 \(\mathcal{G}: u \rightarrow s\) 分解为两个子网络:

\mathcal{G}(u)(y) \approx \sum_{k=1}^{p} \underbrace{b_k(u)}_{\text{Branch Net}} \cdot \underbrace{t_k(y)}_{\text{Trunk Net}}
  • Branch Net:以输入函数 \(u\) 的离散采样 \([u(x_1), ..., u(x_m)]\) 为输入,输出特征向量 \(b \in \mathbb{R}^p\)
  • Trunk Net:以空间坐标 \(y\) 为输入,输出特征向量 \(t \in \mathbb{R}^p\)
  • 输出:两个特征向量的点积作为预测值 \(\mathcal{G}(u)(y)\)

3 数据生成:基于COMSOL的静电场仿真

3.1 模型构建与参数化

几何模型:长方体域 \(\Omega = [0, 1] \times [0, 1] \times [0, 0.5] \, \text{m}^3\),中心放置 \(\epsilon_r = 2.3\) 的介质板。

边界条件参数化

  • 底面 (z=0):施加随机狄利克雷边界 \(\phi_{\text{bottom}} \sim \mathcal{U}(0, 100)\)
  • 顶面 (z=0.5):固定 \(\phi_{\text{top}} = 0\)
  • 侧面:诺依曼边界 \(\frac{\partial \phi}{\partial n} = 0\)
import numpy as np
import comsoldef generate_random_bc():"""生成随机边界条件函数"""bc_func = lambda x, y: np.random.uniform(0, 100)  # 均匀分布随机电势return bc_funcdef run_comsol_simulation(bc_func, mesh_density=0.02):"""在COMSOL中执行静电场仿真"""model = comsol.load('electrostatics_base.mph')model.parameter('phi_bottom', str(bc_func))  # 传入边界函数model.mesh.settings('custom', element_size=mesh_density)model.solve('stationary')return model

3.2 数据采样策略

数据类型采样位置样本数量用途
输入函数 u底面网格节点200点Branch Net输入
输出场 s全域规则网格50×50×25=62,500点训练目标值
坐标 y同输出场62,500点Trunk Net输入

3.3 大规模数据生成流程

graph TDA[生成随机边界函数 u_i] --> B[COMSOL求解静电场]B --> C[提取底面采样 u_i(x_j)]B --> D[提取全场电势 φ_i(y_k)]C --> E[存储为输入数据]D --> F[存储为输出数据]E --> G[数据集D = {u_i, φ_i}]F --> G

4 DeepONet 模型实现

4.1 网络架构细节

Branch Net (处理边界条件):

  • 输入层:200个边界采样点
  • 隐藏层:4层全连接,每层128个神经元,ReLU激活
  • 输出层:128维特征向量 \(b\)

Trunk Net (处理空间坐标):

  • 输入层:3维坐标 (x, y, z)
  • 隐藏层:3层全连接,每层128个神经元,ReLU + BatchNorm
  • 输出层:128维特征向量 \(t\)

合并与输出

\hat{\phi}(y) = \sum_{k=1}^{128} b_k \cdot t_k + b_0

4.2 损失函数与优化

import torch
import torch.nn as nnclass DeepONet(nn.Module):def __init__(self, branch_in=200, trunk_in=3, p=128):super().__init__()self.branch = nn.Sequential(nn.Linear(branch_in, 128), nn.ReLU(),nn.Linear(128, 128), nn.ReLU(),nn.Linear(128, p)self.trunk = nn.Sequential(nn.Linear(trunk_in, 128), nn.BatchNorm1d(128), nn.ReLU(),nn.Linear(128, 128), nn.BatchNorm1d(128), nn.ReLU(),nn.Linear(128, p))
http://www.dtcms.com/wzjs/279361.html

相关文章:

  • 网站怎么做吸引人网站优化公司开始上班了
  • 恒信在线做彩票的是什么样的网站百度的网址
  • 深圳宝安网站建设工seo建设者
  • cms建站系统 java网络营销心得体会1000字
  • 广州网站制作开发最近新闻
  • 网站服务器买了后怎么做网站建设的好公司
  • 自己做网站花钱么网络销售推广是做什么的具体
  • 南昌网站制作方案定制江门seo推广公司
  • 做网咖的网站公司网站建设费
  • 做旅游网站多少钱吉林百度查关键词排名
  • 网站建设设计公司网站建站要多少钱
  • 网站制作合作网络营销策划书包括哪些内容
  • 网站建设 开发工具 python推广方案流程
  • 网页设计分享网站宁波正规seo推广公司
  • wordpress 联系方式海口网站关键词优化
  • 广州专门做网站的公司有哪些郑州网络推广效果
  • 网站漂浮物怎么做百度营销推广
  • 新网站如何做营销百度信息流优化
  • 网站demo制作鸡西网站seo
  • dnf免做卡领取网站教育培训报名
  • 密云免费网站建设陕西seo关键词优化外包
  • 网站建设的想法资阳市网站seo
  • 网站建设与实践高自考友情链接是外链吗
  • 旅游网站的功能有哪些网络广告策划案例
  • 有没有做兼职的网站吗微商已经被国家定为传销了
  • 网站图片怎么做2345网址导航应用
  • 绵阳市公司网站建设电子商务网站建设多少钱
  • 商务网站内容建设包括在线外链工具
  • 百度做鸡网站百度扫一扫识别图片
  • ui设计在哪个网站可以接做网络营销推广公司网站