当前位置: 首页 > wzjs >正文

无锡做公司网站厦门百度代理公司

无锡做公司网站,厦门百度代理公司,wordpress模板克隆,php网站后台模板我想开发一个基于深度学习的分类小软件,逐渐了解到了TensorRT在模型推理速度上的优势,经过一下午资料的查找实现了将onnx模型转为TensorRT格式模型的推理及测试过程。将实现过程记录下来方便日后查看。 本文实验设备是MX350显卡 2G显存 一 、安装Tenso…

我想开发一个基于深度学习的分类小软件,逐渐了解到了TensorRT在模型推理速度上的优势,经过一下午资料的查找实现了将onnx模型转为TensorRT格式模型的推理及测试过程。将实现过程记录下来方便日后查看。

本文实验设备是MX350显卡 2G显存
在这里插入图片描述

一 、安装TensorRT

点击TensorRT下载链接,选择合适的TensorRT版本下载,读者选择使用TensorRT进行推理,默认已经配置好cuda和cudnn环境,如果没配置好请移步这篇博客Windows配置深度学习环境(从查询合适的torch版本开始)——torch+CUDA+cuDNN

TensorRT与cuda版本对应方式查看如下:

  1. 点击TensorRT版本
    在这里插入图片描述

  2. 点击同意
    在这里插入图片描述

  3. 点击版本号
    在这里插入图片描述

  4. 查看cuda版本是否符合你设备,点击下载即可
    在这里插入图片描述

二、环境配置

  1. 下载后得到文件结构如下所示
    在这里插入图片描述
  2. 添加环境变量,右键此电脑点击属性,根据图中序号依次点击并添加环境变量
    我的环境变量如下所示
D:\Software\TensorRT-8.6.1.6\lib
D:\Software\TensorRT-8.6.1.6\bin

在这里插入图片描述

三、模型转换

打开命令行窗口,切换到D:\Software\TensorRT-8.6.1.6\bin目录,执行如下命令

trtexec --onnx=mymodel.onnx --saveEngine=model.trt --fp16

这里的–fp16应该也可以改成int8,但是精度损失会有点大,我没有实验
这个mymodel.onnx需要你自己的onnx文件名,这个model.trt 就随便起名字了
在这里插入图片描述
如下图所示为转换成功
在这里插入图片描述

四、TensorRT与ONNX推理速度与精度测试

推理时间测试

  1. TensorRT推理时间测试代码
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import cv2
import os
import numpy as np
import time
from typing import Tupledef softmax(x: np.ndarray) -> np.ndarray:"""计算softmax"""e_x = np.exp(x - np.max(x))  # 防止数值溢出return e_x / e_x.sum(axis=0)class TensorRTPredictor:def __init__(self, engine_path: str):"""初始化TensorRT预测器"""self.logger = trt.Logger(trt.Logger.WARNING)self.engine = self._load_engine(engine_path)self.context = self.engine.create_execution_context()self.input_shape = tuple(self.engine.get_tensor_shape(self.engine.get_tensor_name(0)))self.output_shape = tuple(self.engine.get_tensor_shape(self.engine.get_tensor_name(1)))self.is_warmed_up = Falsedef _load_engine(self, engine_path: str) -> trt.ICudaEngine:"""加载TensorRT引擎"""load_start_time = time.time()with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())load_end_time = time.time()load_time = (load_end_time - load_start_time) * 1000print(f"加载引擎时间: {load_time:.2f} ms")return enginedef preprocess_image(self, image_path: str) -> np.ndarray:"""图像预处理"""preprocess_start_time = time.time()if not os.path.exists(image_path):raise FileNotFoundError(f"图像文件不存在: {os.path.abspath(image_path)}")image = cv2.imread(image_path)if image is None:raise ValueError("无法读取图像,请检查文件格式和完整性")try:image = cv2.resize(image, (224, 224))image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)image = np.ascontiguousarray(image.transpose(2, 0, 1).astype(np.float32) / 255.0)mean = np.array([0.362, 0.279, 0.258]).reshape(3, 1, 1)std = np.array([0.222, 0.191, 0.185]).reshape(3, 1, 1)image = (image - mean) / stdexcept Exception as e:raise RuntimeError(f"图像预处理失败: {str(e)}")preprocess_end_time = time.time()preprocess_time = (preprocess_end_time - preprocess_start_time) * 1000print(f"  预处理时间: {preprocess_time:.2f} ms")return imagedef warmup(self, iterations: int = 10):"""模型预热"""if self.is_warmed_up:print("模型已经预热,跳过预热步骤")returnwarmup_start_time = time.time()input_size = int(np.prod(self.input_shape)) * np.float32().itemsizeoutput_size = int(np.prod(self.output_shape)) * np.float32().itemsized_input = cuda.mem_alloc(input_size)d_output = cuda.mem_alloc(output_size)stream = cuda.Stream()dummy_input = np.random.rand(*self.input_shape).astype(np.float32)for _ in range(iterations):cuda.memcpy_htod_async(d_input, dummy_input, stream)self.context.execute_async_v2(bindings=[int(d_input), int(d_output)],stream_handle=stream.handle)stream.synchronize()d_input.free()d_output.free()warmup_end_time = time.time()warmup_time = (warmup_end_time - warmup_start_time) * 1000print(f"  预热时间: {warmup_time:.2f} ms")self.is_warmed_up = Truedef infer(self, image: np.ndarray) -> Tuple[float, np.ndarray]:"""执行TensorRT推理"""if not self.is_warmed_up:print("警告:模型尚未预热,推理性能可能受影响")input_size = int(np.prod(self.input_shape)) * np.float32().itemsizeoutput_size = int(np.prod(self.output_shape)) * np.float32().itemsized_input = cuda.mem_alloc(input_size)d_output = cuda.mem_alloc(output_size)stream = cuda.Stream()input_data = np.ascontiguousarray(np.expand_dims(image, axis=0), dtype=np.float32)# 正式推理infer_start_time = time.time()cuda.memcpy_htod_async(d_input, input_data, stream)self.context.execute_async_v2(bindings=[int(d_input), int(d_output)],stream_handle=stream.handle)stream.synchronize()infer_end_time = time.time()infer_time = (infer_end_time - infer_start_time) * 1000print(f"  TensorRT 推理时间: {infer_time:.2f} ms")# 获取输出output_data = np.empty(self.output_shape, dtype=np.float32)output_start_time = time.time()cuda.memcpy_dtoh_async(output_data, d_output, stream)stream.synchronize()output_end_time = time.time()output_time = (output_end_time - output_start_time) * 1000print(f"  获取输出时间: {output_time:.2f} ms")# 置信度confidence = softmax(output_data[0])d_input.free()d_output.free()return infer_time, output_data, confidenceif __name__ == "__main__":# 配置路径PATHS = {"image_folder": "D:/Desktop/DATA/balance_bei_liao_hu/temp",  # 图片文件夹路径"engine": "mnv4.engine"  # TensorRT引擎文件路径}# 验证文件夹和文件存在if not os.path.exists(PATHS["image_folder"]):print(f"错误: 图片文件夹不存在 -> {os.path.abspath(PATHS['image_folder'])}")exit(1)if not os.path.exists(PATHS["engine"]):print(f"错误: 引擎文件不存在 -> {os.path.abspath(PATHS['engine'])}")exit(1)# 获取文件夹中所有图片文件(包括子文件夹)image_files = []for root, _, files in os.walk(PATHS["image_folder"]):for file in files:if file.endswith(('.jpg', '.png', '.bmp', '.jpeg')):image_files.append(os.path.join(root, file))if not image_files:print(f"错误: 文件夹中没有图片文件 -> {PATHS['image_folder']}")exit(1)# 初始化预测器predictor = TensorRTPredictor(PATHS["engine"])predictor.warmup(iterations=10)  # 预热模型total_time = 0total_preprocess_time = 0for image_path in image_files:try:print(f"处理图片: {image_path}")img = predictor.preprocess_image(image_path)trt_time, trt_out, trt_confidence = predictor.infer(img)print(f"  TensorRT 输出: {np.argmax(trt_out)} (置信度: {np.max(trt_confidence):.4f})")total_time += trt_timeexcept Exception as e:print(f"处理图片时出错: {image_path} -> {str(e)}")avg_time = total_time / len(image_files)print(f"\n平均推理时间: {avg_time:.2f} ms")

这里TensorRT推理150张224×224图片平均速度为5.50ms
在这里插入图片描述

  1. ONNX推理时间测试代码
import onnxruntime as ort
import numpy as np
from PIL import Image
from torchvision import transforms
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
import time
import osdef softmax(x: np.ndarray) -> np.ndarray:"""计算softmax"""e_x = np.exp(x - np.max(x))  # 防止数值溢出return e_x / e_x.sum(axis=0)class ONNXPredictor:def __init__(self, model_path="mobilenetv4_hybrid_medium.onnx", size=224):# 自动检测可用providerself.providers = self._get_available_providers()print(f"可用推理后端: {self.providers}")# 初始化ONNX Runtime会话self.session = ort.InferenceSession(model_path, providers=self.providers)# 获取当前使用的provider信息current_provider = self.session.get_providers()print(f"实际使用的推理后端: {current_provider}")# 获取输入输出名称self.input_name = self.session.get_inputs()[0].nameself.output_name = self.session.get_outputs()[0].name# 预处理变换self.transform = self.build_transform(size)# 预热标志self.is_warmed_up = Falsedef _get_available_providers(self):"""获取可用的推理后端,优先使用CUDA且仅使用CUDA(如果可用)"""available_providers = ort.get_available_providers()# 优先使用CUDA且仅使用CUDAif 'CUDAExecutionProvider' in available_providers:return ['CUDAExecutionProvider']  # 仅返回CUDA# 如果没有CUDA,则回退到CPUelif 'CPUExecutionProvider' in available_providers:return ['CPUExecutionProvider']else:raise RuntimeError("没有可用的执行提供程序(既没有CUDA也没有CPU)")def build_transform(self, size: int):"""构建图像预处理流水线"""return transforms.Compose([transforms.Resize(size, interpolation=transforms.InterpolationMode.BICUBIC),transforms.CenterCrop(size),transforms.ToTensor(),transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)])def preprocess(self, image):"""预处理图像"""# 如果输入是文件路径,先加载图像if isinstance(image, str):image = Image.open(image).convert('RGB')# 应用变换并添加batch维度return self.transform(image).unsqueeze(0).numpy()def warmup(self, iterations=10):"""预热模型"""dummy_input = np.random.rand(1, 3, 224, 224).astype(np.float32)for _ in range(iterations):self.session.run([self.output_name], {self.input_name: dummy_input})self.is_warmed_up = Trueprint(f"模型已预热 {iterations} 次")def predict(self, image):"""执行预测"""# 预处理input_data = self.preprocess(image)# 运行模型outputs = self.session.run([self.output_name], {self.input_name: input_data})[0]confidence = softmax(outputs[0])return outputs, confidenceif __name__ == "__main__":# 配置路径PATHS = {"image_folder": "D:/Desktop/DATA/balance_bei_liao_hu/temp",  # 图片文件夹路径"model_path": "mobilenetv4_hybrid_medium.onnx"  # ONNX模型文件路径}# 验证文件夹和文件存在if not os.path.exists(PATHS["image_folder"]):print(f"错误: 图片文件夹不存在 -> {os.path.abspath(PATHS['image_folder'])}")exit(1)if not os.path.exists(PATHS["model_path"]):print(f"错误: 模型文件不存在 -> {os.path.abspath(PATHS['model_path'])}")exit(1)# 获取文件夹中所有图片文件(包括子文件夹)image_files = []for root, _, files in os.walk(PATHS["image_folder"]):for file in files:if file.endswith(('.jpg', '.png', '.bmp', '.jpeg')):image_files.append(os.path.join(root, file))if not image_files:print(f"错误: 文件夹中没有图片文件 -> {PATHS['image_folder']}")exit(1)# 初始化预测器predictor = ONNXPredictor(model_path=PATHS["model_path"], size=224)predictor.warmup(iterations=10)  # 预热模型total_time = 0for image_path in image_files:try:print(f"处理图片: {image_path}")start_time = time.time()predictions, confidence = predictor.predict(image_path)end_time = time.time()inference_time = (end_time - start_time) * 1000  # 转换为毫秒print(f"  ONNX 推理时间: {inference_time:.2f} ms")print(f"  ONNX 输出: {np.argmax(predictions)} (置信度: {np.max(confidence):.4f})")total_time += inference_timeexcept Exception as e:print(f"处理图片时出错: {image_path} -> {str(e)}")avg_time = total_time / len(image_files)print(f"\n平均推理时间: {avg_time:.2f} ms")

在这里插入图片描述

两种格式的模型分别预测了150张尺寸为224×224的三类图片,每一类有50张,调用TensorRT平均每张图片需要5.17ms,而onnx平均每张图片需要11.11ms,TensorRT模型的推理速度缩短为onnx的二分之一,根据查找的资料显示,转换后的模型推理时间的缩短可能与设备有关。

精度测试

  1. TensorRT推理代码
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import cv2
import os
import numpy as np
import time
from typing import Tuple
from sklearn.metrics import classification_report, accuracy_score, f1_score
from collections import Counterclass TensorRTPredictor:def __init__(self, engine_path: str):"""初始化TensorRT预测器"""self.logger = trt.Logger(trt.Logger.WARNING)self.engine = self._load_engine(engine_path)self.context = self.engine.create_execution_context()self.input_shape = tuple(self.engine.get_tensor_shape(self.engine.get_tensor_name(0)))self.output_shape = tuple(self.engine.get_tensor_shape(self.engine.get_tensor_name(1)))self.is_warmed_up = Falseself.warmup(iterations=10)  # 在初始化时进行预热def _load_engine(self, engine_path: str) -> trt.ICudaEngine:"""加载TensorRT引擎"""load_start_time = time.time()with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())load_end_time = time.time()load_time = (load_end_time - load_start_time) * 1000print(f"加载引擎时间: {load_time:.2f} ms")return enginedef preprocess_image(self, image_path: str) -> np.ndarray:"""图像预处理"""preprocess_start_time = time.time()if not os.path.exists(image_path):raise FileNotFoundError(f"图像文件不存在: {os.path.abspath(image_path)}")image = cv2.imread(image_path)if image is None:raise ValueError("无法读取图像,请检查文件格式和完整性")try:image = cv2.resize(image, (224, 224))image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)image = np.ascontiguousarray(image.transpose(2, 0, 1).astype(np.float32) / 255.0)mean = np.array([0.362, 0.279, 0.258]).reshape(3, 1, 1)std = np.array([0.222, 0.191, 0.185]).reshape(3, 1, 1)image = (image - mean) / stdexcept Exception as e:raise RuntimeError(f"图像预处理失败: {str(e)}")preprocess_end_time = time.time()preprocess_time = (preprocess_end_time - preprocess_start_time) * 1000print(f"  预处理时间: {preprocess_time:.2f} ms")return imagedef warmup(self, iterations: int = 10):"""模型预热"""if self.is_warmed_up:print("模型已经预热,跳过预热步骤")returnwarmup_start_time = time.time()input_size = int(np.prod(self.input_shape)) * np.float32().itemsizeoutput_size = int(np.prod(self.output_shape)) * np.float32().itemsized_input = cuda.mem_alloc(input_size)d_output = cuda.mem_alloc(output_size)stream = cuda.Stream()dummy_input = np.random.rand(*self.input_shape).astype(np.float32)for _ in range(iterations):cuda.memcpy_htod_async(d_input, dummy_input, stream)self.context.execute_async_v2(bindings=[int(d_input), int(d_output)],stream_handle=stream.handle)stream.synchronize()d_input.free()d_output.free()warmup_end_time = time.time()warmup_time = (warmup_end_time - warmup_start_time) * 1000print(f"  预热时间: {warmup_time:.2f} ms")self.is_warmed_up = Truedef infer(self, image: np.ndarray) -> Tuple[float, np.ndarray]:"""执行TensorRT推理"""if not self.is_warmed_up:print("警告:模型尚未预热,推理性能可能受影响")input_size = int(np.prod(self.input_shape)) * np.float32().itemsizeoutput_size = int(np.prod(self.output_shape)) * np.float32().itemsized_input = cuda.mem_alloc(input_size)d_output = cuda.mem_alloc(output_size)stream = cuda.Stream()input_data = np.ascontiguousarray(np.expand_dims(image, axis=0), dtype=np.float32)# 正式推理infer_start_time = time.time()cuda.memcpy_htod_async(d_input, input_data, stream)self.context.execute_async_v2(bindings=[int(d_input), int(d_output)],stream_handle=stream.handle)stream.synchronize()infer_end_time = time.time()infer_time = (infer_end_time - infer_start_time) * 1000print(f"  TensorRT 推理时间: {infer_time:.2f} ms")# 获取输出output_data = np.empty(self.output_shape, dtype=np.float32)output_start_time = time.time()cuda.memcpy_dtoh_async(output_data, d_output, stream)stream.synchronize()output_end_time = time.time()output_time = (output_end_time - output_start_time) * 1000print(f"  获取输出时间: {output_time:.2f} ms")d_input.free()d_output.free()return infer_time, output_dataif __name__ == "__main__":# 配置路径PATHS = {"image_folder": "D:/Desktop/DATA/balance_bei_liao_hu/temp",  # 图片文件夹路径"engine": "mnv4.engine"  # TensorRT引擎文件路径}# 验证文件夹和文件存在if not os.path.exists(PATHS["image_folder"]):print(f"错误: 图片文件夹不存在 -> {os.path.abspath(PATHS['image_folder'])}")exit(1)if not os.path.exists(PATHS["engine"]):print(f"错误: 引擎文件不存在 -> {os.path.abspath(PATHS['engine'])}")exit(1)# 获取文件夹中所有图片文件(包括子文件夹)image_files = []for root, _, files in os.walk(PATHS["image_folder"]):for file in files:if file.endswith(('.jpg', '.png', '.bmp', '.jpeg')):image_files.append(os.path.join(root, file))if not image_files:print(f"错误: 文件夹中没有图片文件 -> {PATHS['image_folder']}")exit(1)# 初始化预测器predictor = TensorRTPredictor(PATHS["engine"])# 初始化分类结果统计true_labels = []predicted_labels = []label_mapping = {0: "B", 1: "D", 2: "E"}total_time = 0for image_path in image_files:try:print(f"处理图片: {image_path}")img = predictor.preprocess_image(image_path)trt_time, trt_out = predictor.infer(img)print(f"  TensorRT 推理时间: {trt_time:.2f} ms")predicted_label = np.argmax(trt_out)predicted_labels.append(predicted_label)# 从文件路径中提取真实标签true_label = os.path.basename(os.path.dirname(image_path))true_labels.append(true_label)total_time += trt_timeexcept Exception as e:print(f"处理图片时出错: {image_path} -> {str(e)}")avg_time = total_time / len(image_files)print(f"\n平均推理时间: {avg_time:.2f} ms")# 计算分类结果true_labels = [label for label in true_labels]predicted_labels = [label_mapping[label] for label in predicted_labels]print("\n分类结果统计:")print(f"图片总数: {len(image_files)}")print(f"分类结果: {Counter(predicted_labels)}")# 计算准确率和 F1 分数accuracy = accuracy_score(true_labels, predicted_labels)f1 = f1_score(true_labels, predicted_labels, average='weighted')print(f"准确率: {accuracy:.4f}")  # 保留四位小数print(f"F1 分数: {f1:.4f}")  # 保留四位小数# 输出详细的分类报告print("\n分类报告:")print(classification_report(true_labels, predicted_labels, digits=4))  # 保留四位小数
  1. onnx推理代码
from datasets.split_data import read_split_data
from datasets.mydataset import MyDataset
from torchvision import transforms
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
import torch
from estimate_model import Predictor, Plot_ROC
from timm.models import create_model
import os, cv2, json, random
import pandas as pd
from tqdm import tqdm
import matplotlib.pyplot as pltdef read_test_data(root, plot_image=False):filepaths = []labels = []bad_images = []random.seed(0)assert os.path.exists(root), 'Your root does not exists!!!'classes = [cla for cla in os.listdir(root) if os.path.isdir(os.path.join(root, cla))]classes.sort()class_indices = {k: v for v, k in enumerate(classes)}json_str = json.dumps({v: k for k, v in class_indices.items()}, indent=4)with open('output/classes_indices.json', 'w') as json_file:json_file.write(json_str)every_class_num = []supported = ['.jpg', '.png', '.jpeg', '.PNG', '.JPG', '.JPEG', '.bmp']for klass in classes:classpath = os.path.join(root, klass)images = [os.path.join(root, klass, i) for i in os.listdir(classpath) if os.path.splitext(i)[-1] in supported]every_class_num.append(len(images))flist = sorted(os.listdir(classpath))desc = f'{klass:23s}'for f in tqdm(flist, ncols=110, desc=desc, unit='file', colour='blue'):fpath = os.path.join(classpath, f)fl = f.lower()index = fl.rfind('.')ext = fl[index:]if ext in supported:try:img = cv2.imread(fpath)filepaths.append(fpath)labels.append(klass)except:bad_images.append(fpath)print('defective image file: ', fpath)else:bad_images.append(fpath)Fseries = pd.Series(filepaths, name='filepaths')Lseries = pd.Series(labels, name='labels')df = pd.concat([Fseries, Lseries], axis=1)print(f'{len(df.labels.unique())} kind of images were found in the dataset')test_image_path = df['filepaths'].tolist()test_image_label = [class_indices[i] for i in df['labels'].tolist()]sample_df = df.sample(n=50, replace=False)ht, wt, count = 0, 0, 0for i in range(len(sample_df)):fpath = sample_df['filepaths'].iloc[i]try:img = cv2.imread(fpath)h = img.shape[0]w = img.shape[1]ht += hwt += wcount += 1except:passhave = int(ht / count)wave = int(wt / count)aspect_ratio = have / waveprint('{} images were found in the dataset.\n{} for test'.format(sum(every_class_num), len(test_image_path)))print('average image height= ', have, '  average image width= ', wave, ' aspect ratio h/w= ', aspect_ratio)if plot_image:plt.bar(range(len(classes)), every_class_num, align='center')plt.xticks(range(len(classes)), classes)for i, v in enumerate(every_class_num):plt.text(x=i, y=v + 5, s=str(v), ha='center')plt.xlabel('image class')plt.ylabel('number of images')plt.title('class distribution')plt.show()return test_image_path, test_image_labeltest_image_path, test_image_label = read_test_data('D:/Desktop/DATA/balance_bei_liao_hu/temp', False)def build_transform(img_size):t = []t.append(# to maintain same ratio w.r.t. 224 imagestransforms.Resize(img_size, interpolation=3),)t.append(transforms.CenterCrop(img_size))t.append(transforms.ToTensor())t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))return transforms.Compose(t)test_transform = build_transform(224)test_set = MyDataset(test_image_path, test_image_label, test_transform)sampler_val = torch.utils.data.SequentialSampler(test_set)data_loader_val = torch.utils.data.DataLoader(test_set, sampler=sampler_val,batch_size=int(1.5 * 24),num_workers=0,pin_memory=True,drop_last=False
)
model_predict = create_model('mobilenetv4_hybrid_medium')model_predict.reset_classifier(num_classes=3)
model_predict.to('cuda')
device = torch.device('cuda')Predictor(model_predict, data_loader_val, f'./output/mobilenetv4_hybrid_medium_best_checkpoint.pth', device)
Plot_ROC(model_predict, data_loader_val, f'./output/mobilenetv4_hybrid_medium_best_checkpoint.pth', device)
  1. 结果:
  • TensorRT:
    在这里插入图片描述

  • onnx:
    在这里插入图片描述

可以观察到在转成TensorRT推理后模型精度下降明显,宏平均Precision下降了约4%,宏平均召回下降了约10%,宏平均F1下降了约10%。

http://www.dtcms.com/wzjs/274087.html

相关文章:

  • 企业建设门户网站的目的揭阳seo快速排名
  • 做房产经纪人要自己花钱开网站吗怎么做市场营销和推广
  • zencart网站建设国内最新消息新闻
  • wordpress 单本小说seo是做什么的
  • 英文b2b网站系统灰色关键词排名
  • 网站部署 模板惠州seo外包费用
  • 怎么做属于自己的售卡网站seo网络营销
  • 网站开发公司薪酬绩效广州私人做网站
  • 直播系统平台长沙网站seo收费
  • 十大免费跨境软件seo课程
  • wordpress 添加二级代做seo关键词排名
  • 北京首华建设经营有限公司网站佛山seo外包平台
  • wordpress快速评论重庆seo推广服务
  • 工程项目管理软件 免费宝鸡seo
  • 池州网站建设公司推推蛙seo
  • 南联网站建设公司百度竞价排名是以什么形式来计费的广告?
  • 成都专业网站建设价格临沂做网络优化的公司
  • 网站建设方案的摘要怎么写网络营销工资一般多少
  • 那个网站可以做网站测速对比自己怎么做网站
  • 网站建设的可行性要求百度推广介绍
  • 新企业在哪里做网站好微信软文怎么写
  • 网站建设收费标准报价女性广告
  • argo wordpressseo实战密码第四版pdf
  • 中文域名 怎么做网站百度广告推广怎么收费了
  • 南屏网站建设站长工具的使用seo综合查询运营
  • 北京市昌平建设工程招标网站站长之家ip查询
  • 婚恋交友网站建设策划谷歌搜索广告
  • 网站建设模板登录界面市场营销网站
  • 做淘宝客网站好搭建吗武汉seo优化代理
  • 在阿里云做的网站怎么移动在线网站分析工具