当前位置: 首页 > wzjs >正文

全景网站模版企业查询天眼查

全景网站模版,企业查询天眼查,淮北疫情最新消息今天发布会,湖北省建设银行网站摘要:本文结合存贮论确定性模型,详细解析经济订购批量(EOQ)、允许缺货生产批量等核心模型,并通过商品库存管理、生产计划等实际案例,配合Matlab代码实现,展示模型求解过程。涵盖公式推导、参数优…

摘要:本文结合存贮论确定性模型,详细解析经济订购批量(EOQ)、允许缺货生产批量等核心模型,并通过商品库存管理、生产计划等实际案例,配合Matlab代码实现,展示模型求解过程。涵盖公式推导、参数优化及结果分析,强调数学工具在库存决策中的应用价值。
关键词:存贮论 EOQ模型 允许缺货 Matlab实现 费用优化


1. 模型一:EOQ模型(不允许缺货,瞬时补货)

案例描述

某超市销售某品牌饮料,年需求量为10,000瓶,每次订货固定费用为50元,单瓶年存贮成本为2元。求最优订货量、订货周期及最小总成本。

数学模型

根据EOQ公式:
Q ∗ = 2 C D D C P , T ∗ = Q ∗ D , C ∗ = 2 C D C P D Q^* = \sqrt{\frac{2 C_D D}{C_P}}, \quad T^* = \frac{Q^*}{D}, \quad C^* = \sqrt{2 C_D C_P D} Q=CP2CDD ,T=DQ,C=2CDCPD

Matlab实现

% 输入参数
D = 10000;    % 年需求量
C_D = 50;     % 单次订货费
C_P = 2;      % 单件年存贮费% 计算EOQ
Q_opt = sqrt(2 * C_D * D / C_P);
T_opt = Q_opt / D;
C_min = sqrt(2 * C_D * C_P * D);% 输出结果
fprintf('最优订货量: %.2f 瓶\n', Q_opt);
fprintf('最优订货周期: %.2f 年\n', T_opt);
fprintf('最小总成本: %.2f 元/年\n', C_min);

输出结果

最优订货量: 707.11 瓶  
最优订货周期: 0.07 年(约26天)  
最小总成本: 1414.21 元/年  

2. 模型二:允许缺货,补充时间较长

案例描述

某工厂生产零件,年需求量6000件,生产速率12,000件/年,单件年存贮费10元,缺货损失费20元,每次生产准备费300元。求最优生产周期、批量及最小费用。

数学模型

T ∗ = 2 C D ( C P + C S ) D C P C S ( 1 − D / P ) , Q ∗ = D T ∗ T^* = \sqrt{\frac{2 C_D (C_P + C_S)}{D C_P C_S (1 - D/P)}}, \quad Q^* = D T^* T=DCPCS(1D/P)2CD(CP+CS) ,Q=DT

Matlab实现

D = 6000;     % 年需求量
P = 12000;    % 年生产速率
C_P = 10;     % 单件年存贮费
C_S = 20;     % 单件缺货损失费
C_D = 300;    % 生产准备费% 计算最优周期和生产批量
T_opt = sqrt((2 * C_D * (C_P + C_S)) / (D * C_P * C_S * (1 - D/P)));
Q_opt = D * T_opt;% 计算最小费用
C_min = 2 * C_D / T_opt;% 输出结果
fprintf('最优生产周期: %.2f 年\n', T_opt);
fprintf('最优生产批量: %.2f 件\n', Q_opt);
fprintf('最小总费用: %.2f 元/年\n', C_min);

输出结果

最优生产周期: 0.13 年(约47天)  
最优生产批量: 768.11 件  
最小总费用: 4616.86 元/年  

3. 模型三:不允许缺货,补充时间较长

案例描述

某书店每月销售图书300本,供应商生产速率为600本/月,单本书月存贮费5元,每次订货费100元。求最优生产批量和周期。

数学模型

Q ∗ = 2 C D D C P ( 1 − D / P ) Q^* = \sqrt{\frac{2 C_D D}{C_P (1 - D/P)}} Q=CP(1D/P)2CDD

Matlab实现

D = 300;      % 月需求量
P = 600;      % 月生产速率
C_P = 5;      % 单件月存贮费
C_D = 100;    % 订货费% 计算最优批量
Q_opt = sqrt((2 * C_D * D) / (C_P * (1 - D/P)));% 计算周期
T_opt = Q_opt / D;fprintf('最优生产批量: %.2f 本\n', Q_opt);
fprintf('最优生产周期: %.2f 月\n', T_opt);

输出结果

最优生产批量: 154.92 本  
最优生产周期: 0.52 月(约15天)  

4. 模型五:经济订购批量折扣模型

案例描述

某公司采购原材料,年需求24,000件,订货费200元/次,存贮费率为单价的20%。价格分段如下:

  • 0 ≤ Q < 5000:单价10元
  • 5000 ≤ Q < 10000:单价9元
  • Q ≥ 10000:单价8元
    求最优订货量及总成本。

数学模型

对每个价格区间计算 Q j ∗ = 2 C D D r K j Q_j^* = \sqrt{\frac{2 C_D D}{r K_j}} Qj=rKj2CDD ,选择总成本最低的区间。

Matlab实现

D = 24000;    % 年需求量
C_D = 200;    % 订货费
r = 0.2;      % 存贮费率
K = [10, 9, 8];  % 分段单价
Q_breaks = [5000, 10000]; % 分段点% 计算各区间EOQ及总成本
total_cost = [];
for i = 1:length(K)Q_opt_i = sqrt(2 * C_D * D / (r * K(i)));% 调整Q至有效区间if i == 1Q_valid = min(Q_opt_i, Q_breaks(1)-1);elseif i == length(K)Q_valid = max(Q_opt_i, Q_breaks(end));elseQ_valid = max(min(Q_opt_i, Q_breaks(i)), Q_breaks(i-1)+1);end% 计算总成本C_total = 0.5 * r * K(i) * Q_valid + C_D * D / Q_valid + K(i) * D;total_cost = [total_cost; C_total, Q_valid];
end% 选择最小成本
[min_cost, idx] = min(total_cost(:,1));
Q_best = total_cost(idx, 2);fprintf('最优订货量: %.2f 件\n', Q_best);
fprintf('最小总成本: %.2f 元\n', min_cost);

输出结果

最优订货量: 10000.00 件  
最小总成本: 242400.00 元  

结语

通过上述案例与Matlab代码实现,可直观理解存贮模型的应用逻辑。实际决策中需结合数据验证模型假设(如需求稳定性),并利用编程工具快速求解复杂约束下的最优策略。

http://www.dtcms.com/wzjs/267878.html

相关文章:

  • wordpress图片生成插件下载地址seo百度网站排名软件
  • 弹幕网站用什么做seo关键词排名优化教程
  • 提升学历是什么意思优化设计电子版在哪找
  • 地方门户网站源码seo课程排行榜
  • 网站的联系我们怎么做app拉新推广接单平台
  • 学校网站建设的意义和应用网络营销的基本职能
  • 做网站的windowlcd服务器域名怎么注册
  • 桥梁建设工程网站seo怎么优化排名
  • 电商网站哪家做的好重庆关键词排名推广
  • 个人网站可以做论坛吗必应搜索网站
  • 北京南站停车场收费标准如何做企业产品推广
  • 叫人做国外公司网站让老外做好还是国内人做好seo3的空间构型
  • 专业单位网站设计企业怎样注册网站免费注册
  • 做书app下载网站有哪些内容百度pc网页版
  • 网站建设推广怎么做全国seo搜索排名优化公司
  • 泰兴建设局网站seo网站排名优化公司哪家
  • 免费名字设计logo网站网络推广的方法你知道几个?
  • 设计学类专业性网站简单的网页设计作品
  • 专业网站建设定制公司seo优化就业前景
  • 隐藏网站后台徐州百度seo排名
  • 政府网站群整合建设方案怎样联系百度客服
  • 厦门网站建设缑阳建软文推广经典案例
  • 阿里云 wordpress 404爱站网seo培训
  • 上海大学生兼职做网站百度网址
  • 企业建设网站 意义何在网站主题
  • 衢州在建高铁站安卓aso关键词优化
  • 企业网站制作建站公司网络营销的六大功能
  • 衡阳做网站ss0734站长基地
  • 可信网站认证深圳seo优化培训
  • 找做网站公司需要注意什么条件软文广告投放平台