当前位置: 首页 > wzjs >正文

工程建设合同湖南专业seo优化

工程建设合同,湖南专业seo优化,天猫入驻官网入口,蚌埠网站优化制作公司学习笔记(24): 机器学习之数据预处理Pandas和转换成张量格式[2] 学习机器学习,需要学习如何预处理原始数据,这里用到pandas,将原始数据转换为张量格式的数据。 学习笔记(23): 机器学习之数据预处理Pandas和转换成张量格式[1]-CSDN博客 下面…

学习笔记(24): 机器学习之数据预处理Pandas和转换成张量格式[2]

学习机器学习,需要学习如何预处理原始数据,这里用到pandas,将原始数据转换为张量格式的数据。

学习笔记(23): 机器学习之数据预处理Pandas和转换成张量格式[1]-CSDN博客

下面介绍下:处理缺失值(删除法)

为什么要这样做?

这种处理缺失值的策略很实用,当某列的缺失值比例过高时,保留该列可能会对后续分析造成负面影响。删除缺失值最多的列可以避免在缺失值填充时引入过多噪声,提高数据质量。

原始数据:
   NumRoos Alley   Price
0      NaN  Pave  127500
1      2.0   NaN  106000
2      4.0   NaN  178100
3      NaN   NaN  140000

1、处理缺失值(删除法)

      “NaN”项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑删除法。

1.1、代码

# 处理缺失值
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
# 转换 NumRoos 列为数值类型(将 'NA' 转为 NaN)
inputs['NumRoos'] = pd.to_numeric(inputs['NumRoos'],errors='coerce')# 计算每列的缺失值数量
miss_counts = inputs.isna().sum()
print("\n各列缺失值数量:")
print(miss_counts)# 找出缺失值最多的列
if not miss_counts.empty:max_miss = miss_counts.max()  # 计算最大缺失值数量,结果为3(Alley列有3个缺失值print(max_miss)clos_drop = miss_counts[miss_counts ==max_miss].index.tolist() #筛选出缺失值数量等于最大值的列,miss_counts == max_miss 返回布尔 Seriesinputs = inputs.drop(columns=clos_drop)  #删除筛选出的列print(f"\n已删除缺失值最多的列: {clos_drop}")# 用均值填充 NumRoos 列的缺失值
inputs['NumRoos'] = inputs['NumRoos'].fillna(inputs['NumRoos'].mean())print("\n处理后的数据:")
print(inputs)

代码解析如下

1. 数据分割:提取输入特征和输出标签
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]

inputs:提取数据的前两列(索引 0 和 1)作为特征(NumRoos和Alley)。
outputs:提取第三列(索引 2)作为目标变量(Price)。
2. 将NumRoos列转换为数值类型
inputs['NumRoos'] = pd.to_numeric(inputs['NumRoos'], errors='coerce')

pd.to_numeric(..., errors='coerce'):将字符串类型的数值转换为数字,无法转换的(如NA)会被转为NaN(缺失值)。
3. 计算每列的缺失值数量
miss_counts = inputs.isna().sum()
print("\n各列缺失值数量:")
print(miss_counts)
inputs.isna():返回一个布尔型 DataFrame,标记每个位置是否为缺失值。
.sum():统计每列的True(缺失值)数量。

#筛选出缺失值数量等于最大值的列

clos_drop = miss_counts[miss_counts == max_miss].index.tolist()

这行代码主要做了三件事:筛选、提取索引、转换为列表。

1、筛选操作 missing_counts[...]

     miss_counts == max_miss 返回布尔 Series
     miss_counts[...] 筛选出值为True的行(即Alley)。

# 结果:
# NumRoos    False
# Alley       True
# dtype: bool

2、.index 获取列名

筛选结果是一个新的 Series,我们需要它的索引(也就是列名)

# 结果:
# Index(['Alley'], dtype='object')

3、.tolist() 转换为列表

.index.tolist() 将列名转为列表 ['Alley']。

为什么要转换为列表?

你可能会问:为什么不直接用索引对象,而非要转成列表呢?这主要是为了兼容drop()方法。drop()方法的columns参数可以接受列名列表或索引对象,但列表更灵活,方便后续处理。

关键细节总结
1、缺失值处理策略:
优先删除缺失比例最高的列(Alley列缺失率 75%)。
对剩余列(NumRoos)用均值填充。
2、数据类型转换:
pd.to_numeric(..., errors='coerce') 是处理含缺失值的数值列的常用方法。
3、边缘情况处理:
当有多个列缺失值数量相同时(如两列均有 3 个缺失值),会同时删除这些列。
if not miss_counts.empty 确保无缺失值时不会报错。

# 用均值填充 NumRoos 列的缺失值

inputs['NumRoos'] = inputs['NumRoos'].fillna(inputs['NumRoos'].mean())

inputs['NumRoos'].mean():计算NumRoos列的均值(结果为 3.0,因为有效数值为 2 和 4)。
.fillna(...):将NumRoos列的缺失值(NaN)填充为均值 3.0。

1.2、执行结果

2、转换为张量格式

现在inputsoutputs中的所有条目都是数值类型,它们可以转换为张量格式。

2.1、代码

import torch
print("\n转换成张量数据:")
x = torch.tensor(inputs.to_numpy(dtype=float))
print(x)
y = torch.tensor(outputs.to_numpy(dtype=float))
print(y)

2.2、执行结果

  • pandas软件包是Python中常用的数据分析工具中,pandas可以与张量兼容。

  • pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。

http://www.dtcms.com/wzjs/257479.html

相关文章:

  • html5网页设计软件网站优化课程
  • 购物网站管理系统免费建站网站一级
  • 网站制作价格明细百度客户端手机版
  • asp做企业网站很好啊大连网络推广
  • 刚做外贸最好用哪个网站北京搜索优化排名公司
  • 嵌入式软件开发是什么专业短视频seo优化排名
  • 凡客手机网站怎么建设网络推广属于什么专业
  • 交友免费的网站建设哈尔滨最新今日头条新闻
  • 淘客手机版网站怎么做免费推广app软件下载
  • 百度收录网站的图片整合营销传播工具有哪些
  • phpcms做的网站网站制作论文
  • 网站怎么做站内美化成人技能培训机构
  • 珲春建设局网站苏州优化排名seo
  • html5手机网站制作软件seo教程seo教程
  • 邱县做网站北京网站优化推广方案
  • 网站代备案网络推广软件免费
  • 英文网站策划产品推广策划书
  • 建设工程公司企业文化惠州seo外包公司
  • 人民政府 网站建设网站关键词全国各地的排名情况
  • 电子网站建设策划模板seo关键词排名优化的方法
  • 潍坊网站建设服务商百度推广四川成都地区服务中心
  • 做网站时怎样图片上传怎么才能让图片不变形_有什么插件吗网站查询备案信息
  • 网站制作网站做网重庆关键词排名推广
  • 往网站添加图片吗种子搜索神器在线搜
  • 做便宜网站百度搜索简洁版网址
  • 烟台网站制作培训营销公司取名字大全
  • 东莞塘厦做网站媒体网站
  • 界首做网站软文广告300字范文
  • 学校网站代码广告联盟接单平台
  • 滨海新区做网站电话手机网站seo免费软件