当前位置: 首页 > wzjs >正文

陕西省档案馆建设网站济南全网推广

陕西省档案馆建设网站,济南全网推广,静态网页制作网站,网站推广工具推荐基本模型 假设在二维直角坐标系中,可以用相互垂直的基向量和表示: 假设: 假设在上的投影为,那么: 所以: 用公式表达: 但是在实际中,基向量和不一定长度都是1,重新推导一…

基本模型

假设在二维直角坐标系中,\underset{C}{\rightarrow}可以用相互垂直的基向量\underset{A_1}{\rightarrow}\underset{A_2}{\rightarrow}表示:

假设:

\overrightarrow{A_1} = [1, 0]

\overrightarrow{A_2} = [0, 1]

\overrightarrow{C} = [2, 3]

假设\overrightarrow{C}\overrightarrow{A_1}上的投影为T_{\overrightarrow A_1}^{\overrightarrow C},那么:

T_{\overrightarrow A_1}^{\overrightarrow C} = \overrightarrow{C} \cdot \overrightarrow{A_1} = 2*1 + 3*0 = 2

T_{\overrightarrow A_2}^{\overrightarrow C} = \overrightarrow{C} \cdot \overrightarrow{A_2} = 2*0 + 3*1 = 3

所以:

\overrightarrow{C} = 2\overrightarrow{A_1} + 3\overrightarrow{A_2}

用公式表达:

\overrightarrow{C} = k_{1}\overrightarrow{A_1} + k_{2}\overrightarrow{A_2}

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \overrightarrow C \cdot \overrightarrow A_1

k_2 = T_{\overrightarrow A_2}^{\overrightarrow C} = \overrightarrow C \cdot \overrightarrow A_2

但是在实际中,基向量\underset{A_1}{\rightarrow}\underset{A_2}{\rightarrow}不一定长度都是1,重新推导一下:

假设:

\overrightarrow{A_1} = [5, 0]

\overrightarrow{A_2} = [0, 7]

\overrightarrow{C} = [2, 3]

那么:

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac { | \overrightarrow C | cos\theta } {| \overrightarrow A_1 |}

两边乘以| \overrightarrow A_1 |

k_1 = \frac { | \overrightarrow A_1 | | \overrightarrow C | cos\theta } {| \overrightarrow A_1 | ^2}

分子部分其实就是求\overrightarrow{C}\overrightarrow{A_1}上的投影与| \overrightarrow{A_1} |的乘积,所以:

k_1 = \frac { \overrightarrow A_1 \cdot \overrightarrow C } {| \overrightarrow A_1 | ^2}

带入数据:

k_1 = \frac {[5,0] \cdot [2, 3]}{\sqrt{5^2+0^0}^2} = \frac{5*2+0*3}{25} = \frac{2}{5}
大功告成。

结论:

\overrightarrow{C} = k_{1}\overrightarrow{A_1} + k_{2}\overrightarrow{A_2}

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_1}{|\overrightarrow A_1|^2}

k_2 = T_{\overrightarrow A_2}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_2}{|\overrightarrow A_2|^2}

从二维到无限维

二维模型如下:

向量维度1的投影维度2的投影
\overrightarrow{C}23
\overrightarrow{A_1}10
\overrightarrow{A_2}01

扩展到三维:

向量维度1的投影维度2的投影维度3的投影
\overrightarrow{C}c1c2c3
\overrightarrow{A_1}100
\overrightarrow{A_2}010
\overrightarrow{A_3}001

可以看到,\overrightarrow{C}有多少个维度就要有多少个基向量,每个基向量的维度和\overrightarrow{C}相等。

扩展到无限维:

向量维度1的投影维度2的投影维度3的投影维度n的投影
\overrightarrow{C}c1c2c3cn
\overrightarrow{A_1}1000
\overrightarrow{A_2}0100
\overrightarrow{A_3}0010
\overrightarrow{A_n}0001

把函数当成无限维向量

把函数的t当成无限维,它的值分布在各自的维度上:

函数t_0t_1t_2t_n
f(t)f(t_0)f(t_1)f(t_2)f(t_n)
f_1(t)f_1(t_0)f_1(t_1)f_1(t_2)f_1(t_n)
f_2(t)f_2(t_0)f_2(t_1)f_2(t_2)f_2(t_n)
f_3(t)f_3(t_0)f_3(t_1)f_3(t_2)f_3(t_n)
f_n(t)f_n(t_0)f_n(t_1)f_n(t_2)f_n(t_n)

于是:

f(t) = k_1f_1(t) + k_2f_2(t) + ... + k_nf_n(t)

f(t) = \sum_{i=0}^{n} k_{i}f_i(t)

这里有个容易让人困惑的点:

前面的各个基向量都是这样的:

向量维度1的投影维度2的投影维度3的投影维度n的投影
\overrightarrow{A_1}1000
\overrightarrow{A_2}0100
\overrightarrow{A_3}0010
\overrightarrow{A_n}0001

每个向量只在自己的维度有值,在别的维度为0。

那现在的函数在别的维度上等于0吗?

不一定,但是没错。

首先各个维度的基向量是正交(垂直)的,比如:

T_{\overrightarrow{A_3}}^{\overrightarrow{A_1}} = \frac { \overrightarrow{A_1} \cdot \overrightarrow{A_3}} {|\overrightarrow{A_3}|^2} = \frac { [1,0,0] \cdot [0,0,1] }{\sqrt{0^2+0^2+3^2}^2} = 0

这里的函数其实也是正交的:

T_{f_3(t)}^{f_1(t)} = \frac { f_1(t) \cdot f_3(t) }{f_3(t) \cdot f_3(t)} = \frac { \sum_{0}^{t_n} f_1(t)f_3(t) } { \sum_{0}^{t_n} f_3(t)f_3(t) }

两边乘以dt

T_{f_3(t)}^{f_1(t)} = \frac { \frac { \int_{0}^{t_n} f_1(t)f_3(t) dt } {dt} } { \frac { \int_{0}^{t_n} f_3(t)f_3(t) dt } {dt} } = \frac {\int_{0}^{t_n} f_1(t)f_3(t) dt}{\int_{0}^{t_n} f_3(t)f_3(t) dt}

在傅里叶变换中:

各个基函数=sin(nw_0t)+cos(nw_0t) 

其中w_0是步长的意思,任你选取,n=1,2,...

总的意思就是f(t)可以表示成很多正交的、不同频率(一个频率就是一个维度)的三角函数之和。

可以证明:

sin(nw_0t)sin(kw_0t)正交,sin(nw_0t)cos(kw_0t)正交。

于是:

f_1(t) = sin(w_0t)

f_3(t) = sin(3w_0t)

T_{f_3(t)}^{f_1(t)} = \frac {\int_{0}^{t_n} f_1(t)f_3(t) dt}{\int_{0}^{t_n} f_3(t)f_3(t) dt} = 0

好了,f_i(t)已知了,k_i怎么求?

由前面的公式:

k_1 = T_{\overrightarrow A_1}^{\overrightarrow C} = \frac {\overrightarrow C \overrightarrow A_1}{|\overrightarrow A_1|^2}

可以推导出:

k_1 = T_{f_1(t)}^{f(t)} = \frac {f(t) \cdot f_1(t) }{f_1(t) \cdot f_1(t)} = \frac { \sum_{t=0}^{t_n}f(t) \cdot f_1(t) }{ \sum_{t=0}^{t_n} f_1(t) \cdot f_1(t)}

套用之前两边乘以dt的方法:

k_1 = \frac { \frac { \int_{0}^{t_n}f(t) f_1(t)dt}{dt} }{\frac { \int_{0}^{t_n}f_1(t) f_1(t)dt}{dt}}

k_1 = \frac { \int_{0}^{t_n}f(t) f_1(t)dt} { \int_{0}^{t_n}f_1(t) f_1(t)dt}

带入f_1(t) = sin(nw_0t)n = 1

k_1 = \frac { \int_{0}^{t_n}f(t) sin(nw_0t)dt} { \int_{0}^{t_n}sin(nw_0t) sin(nw_0t)dt}

k_1 = \frac { \int_{0}^{t_n}f(t) sin(nw_0t)dt} {t_n/2}

k_1 = \frac{2}{t_n} \int_{0}^{t_n}f(t) sin(nw_0t)dt

这便是傅里叶级数了。

其它

各个基函数必须是两两正交的,不然所有推导都是错的。

好多资料说两个函数的正交等于它们的内积:

f_1(t) \cdot f_3(t) = \int_{t=0}^{T} f_1(t)f_3(t) dt

但是由向量的点积推出来应该是这样才对:

f_1(t) \cdot f_3(t) = \frac { \int_{t=0}^{T} f_1(t)f_3(t) dt } {dt}

可这样也是不对的,不存在这种操作。在我的推导中用了这个等式,但是我分子分母约掉dt了,所以避开了。

http://www.dtcms.com/wzjs/257168.html

相关文章:

  • 请问做网站怎么赚钱各类资源关键词
  • 分类网站 phpseo长沙
  • 中国能建平台seo优化运营专员
  • 效果好的网站建设公宣传渠道和宣传方式有哪些
  • 手机app开发软件教程seo优化网站优化排名
  • 桥西网站建设seo搜索引擎优化实训报告
  • 网站做直播需要什么资质开发一个app需要多少钱?
  • php玩具公司网站源码在线培训系统平台
  • 网站策划名词解释优化大师破解版app
  • ulysses wordpress运营推广seo招聘
  • 自己如何建设网站首页企业seo顾问
  • 手机怎么做黑网站不付费免费网站
  • 网站建设qq学生个人网页制作成品
  • 做h5网站公司怎么优化电脑系统
  • wordpress自适应模版连云港seo
  • 北京企业建站服务中企百度一下 你知道首页
  • 提供网站建设备案公司广告设计自学教程
  • 美食网站html静态线下推广100种方式
  • 哪个视频网站做视频赚钱陕西seo排名
  • 长春专业做网站的公司有哪些推广业务
  • 湿地公园网站建设营销方式都有哪些
  • 网站公安备案怎样注销网站自己推广
  • 网站开发 前景教育培训学校
  • 海外网站建设推广线上教育培训机构十大排名
  • 怎么做网站才能被收购无锡网站关键词推广
  • 佛山住房和城乡建设厅网站文登seo排名
  • 学生党0元做微商代理长沙网站托管seo优化公司
  • 椒江街道招聘建设网站西安网站维护
  • 网站设计与建设ppt网络营销策略分析论文
  • 分类目录网站有哪些网上推广方式