当前位置: 首页 > wzjs >正文

做电商网站都需要学什么网络整合营销4i原则

做电商网站都需要学什么,网络整合营销4i原则,佛山 网站设计公司,桂林企业网重磅推荐专栏: 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经…

重磅推荐专栏:
《大模型AIGC》
《课程大纲》
《知识星球》

本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

一、什么是 RAG Agent?

1. 从信息处理到智能生成

在自然语言处理领域,传统问答系统往往面临两大难题:如何突破模型知识边界?如何保障回答的可信度?RAG(Retrieval-Augmented Generation)架构应运而生。而当我们以工程视角实现RAG时,就需要一个标准化的载体——RAG Agent。

2. 代码解构:RAG Agent的骨骼

观察示例代码中的RAGAgent类,我们可以看到一个典型实现:

class RAGAgent(BaseAgent):def retrieve(self, query: str, **kwargs) -> Tuple[List[RetrievalResult], int, dict]:# 检索核心逻辑def query(self, query: str, **kwargs) -> Tuple[str, List[RetrievalResult], int]:# 端到端查询流程

这个类继承自BaseAgent,体现了面向接口编程思想。两个核心方法retrievequery分别对应RAG的两大阶段:

2.1 检索阶段(Retrieve)

• 输入:自然语言查询
• 处理:向量数据库相似度检索
• 输出:RetrievalResult列表(包含文档片段、相似度分数等)

# 示例返回结构
[RetrievalResult(content="深度学习模型...", score=0.92),RetrievalResult(content="神经网络结构...", score=0.88)
]

2.2 生成阶段(Generate)

• 输入:原始查询 + 检索结果
• 处理:LLM融合信息生成最终回答
• 输出:自然语言回答 + 参考溯源

3. 技术实现的三重保障

1. 可观测性设计

返回元组中的int类型token计数器,为成本监控提供基础:

def query(...) -> Tuple[str, List[RetrievalResult], int]:# 最后一个int即为token消耗总量

2. 扩展性架构

**kwargs参数的设计允许灵活接入:
• 检索参数控制(top_k、相似度阈值)
• 生成参数调节(temperature、max_length)
• 多路召回扩展

3. 类型安全

通过类型注解确保接口规范:
List[RetrievalResult]保证检索结果结构统一
Tuple明确约定返回顺序

4. RAG Agent的独特优势

对比传统问答系统,该架构具有显著优势:

维度传统问答RAG Agent
知识边界依赖训练数据动态扩展
数据新鲜度静态知识实时更新
可解释性黑盒响应溯源支持
维护成本全量重训增量更新

5. 典型应用场景

  1. 企业知识库问答
    将内部文档库作为检索源,确保回答符合企业规范

  2. 学术研究助手
    连接论文数据库,生成带文献引用的综述

  3. 智能客服系统
    基于最新产品文档生成准确话术

二、揭秘Naive RAG:从代码实例看检索增强生成系统的核心架构

1. 智能路由系统:知识库的"导航助手"

1.1 路由决策的核心代码

当我们向系统提问"如何预防糖尿病并发症"时,路由模块通过以下代码实现知识库选择:

# 生成路由提示模板
prompt = """
"QUESTION": 如何预防糖尿病并发症
"COLLECTION_INFO": [{"collection_name": "medical_encyclopedia", "description": "疾病百科全书"},{"collection_name": "drug_database", "description": "药品说明书库"}
]
"""# 大模型返回的响应示例
model_response = "['medical_encyclopedia']"# 解析模型响应
selected_collections = literal_eval(model_response)  # 得到['medical_encyclopedia']

1.2 路由异常处理机制

当遇到未描述的知识库时,系统自动将其纳入检索范围:

# 处理无描述的知识库
for collection in all_collections:if not collection.description:selected_collections.append(collection.name)  # 自动加入检索列表# 包含默认知识库
if vector_db.default_collection:selected_collections.append("default_medical")  # 确保基础医学库被检索

2. 智能检索引擎:知识挖掘的"矿工"

2.1 分布式检索实现

当选择3个知识库且设置top_k=15时,检索分配逻辑如下:

top_k_per_collection = 15 // 3 = 5  # 每个库检索5条
results = []
for collection in selected_collections:res = vector_db.search(query_vector, top_k=5,filter="category=='糖尿病'")results.extend(res)

2.2 上下文扩展技术

原始检索结果与扩展后对比:

# 原始文本片段
原始结果: "血糖监测是糖尿病管理的基础"# 扩展后文本
{"text": "血糖监测是糖尿病管理的基础","wider_text": "《糖尿病防治指南》第3章指出:患者应定期进行血糖监测...(完整段落)"
}

3. 答案生成引擎:信息整合的"分析师"

3.1 结构化提示模板

系统将检索结果转换为XML格式的输入:

mini_chunk_str = '''
<chunk_1>
《中国2型糖尿病防治指南》建议:所有糖尿病患者...
</chunk_1>
<chunk_2>
美国ADA指南强调:饮食控制需要配合定期运动...
</chunk_2>'''

3.2 生成过程示例

最终提交给LLM的提示模板:

您是一位医疗分析专家,请根据以下资料回答问题:原始问题:如何预防糖尿病并发症?相关文献:
<chunk_1>...糖尿病监测标准...</chunk_1>
<chunk_2>...饮食控制方案...</chunk_2>

4. 核心架构设计解析

4.1 模块化设计思想

类初始化展现的组件解耦:

class NaiveRAG:def __init__(self, llm, embedding_model, vector_db):self.llm = llm               # 可替换GPT-4/Claude等模型self.embedding = embedding   # 支持多种文本编码器self.vector_db = vector_db   # 兼容各类向量数据库

4.2 全链路可观测性

系统运行时的关键日志输出:

[SYSTEM] 在[
http://www.dtcms.com/wzjs/256850.html

相关文章:

  • 大连建设网煤气查询seo怎么才能做好
  • 网站推广营销收费网站流量查询
  • 温州网站设计方案我赢网seo优化网站
  • 政府网站英文域名注册黄页引流推广网站
  • 用wordpress做开发贵阳关键词优化平台
  • html5 做网站怎么网上宣传自己的产品
  • asp做静态网站个人网站推广
  • 产品做网站推广网络培训网站
  • godaddy怎么建设网站个人网页免费域名注册入口
  • 项目从立项到结束的流程图青岛设计优化公司
  • 做批发童车网站有哪些电话营销系统
  • 做网站数据库互联网推广引流公司
  • 建筑网站搜图发布项目信息的平台
  • 网页隐藏网站代码做一个公司网页多少钱
  • 怎么免费制作一个企业网站企业网站设计毕业论文
  • 新手如何做自己的网站新站seo快速排名 排名
  • 网站建设需要服务器吗网站域名注册
  • php 做网站 python8大营销工具指的是哪些
  • 信息安全网站建设方案书适合中层管理的培训
  • ios移动网站开发企业网站推广可以选择哪些方法
  • 网站建设 中企动力南昌0792太原百度网站快速排名
  • 做网站设计的网站关键词搜索技巧
  • 如何在各大网站发布信息百度在线客服
  • 做网站前途东莞seo技术
  • 怎么做乞讨网站优化大师最新版本
  • 做网站需要注意什么互联网营销成功案例
  • 高端大气网站建设网络项目怎么推广
  • 西宁做网站的工作室汕头seo全网营销
  • 中国八冶建设集团网站品牌策划案
  • 如何做条形码网站怎么搞seo搜索引擎优化介绍