当前位置: 首页 > wzjs >正文

php+做网站网址域名ip查询

php+做网站,网址域名ip查询,济南做网站互联网公司排名,网站建设分金手指排名二六文章目录 Singleton1 指针版本Version 1 非线程安全版本Version 2 加锁版本Version 3.1 双重检查锁版本 AtomicMutexVersion 3.2 双重检查锁版本 Atomic-onlyVersion 3 两种方式对比 2 引用版本Version 1 简单版本 不推荐Version 2 初始化安全版本Version 3 初始化操作安全版本…

文章目录

  • Singleton
    • 1 指针版本
      • Version 1 非线程安全版本
      • Version 2 加锁版本
      • Version 3.1 双重检查锁版本 Atomic+Mutex
      • Version 3.2 双重检查锁版本 Atomic-only
      • Version 3 两种方式对比
    • 2 引用版本
      • Version 1 简单版本 不推荐
      • Version 2 初始化安全版本
      • Version 3 初始化+操作安全版本
      • Explanation
      • Comparison

Singleton

1 指针版本

Version 1 非线程安全版本

class Logger {
public:static Logger *GetInstance() {if (instance == nullptr) {instance = new Logger();}return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:static Logger *instance;Logger() {}
};Logger *Logger::instance = nullptr;

Version 2 加锁版本

增加锁,用于保证线程安全,但是锁开销会影响性能。

class Logger {
public:static Logger *GetInstance() {std::lock_guard<std::mutex> lk(mutex_);if (instance == nullptr) {instance = new Logger();}return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:Logger() {}static Logger *instance;static std::mutex mutex_;
};Logger *Logger::instance = nullptr;
std::mutex Logger::mutex_;

Version 3.1 双重检查锁版本 Atomic+Mutex

class Logger {
public:static Logger* GetInstance() {// First, attempt to load the current instance atomicallyLogger* tmp = instance.load(std::memory_order_acquire);// If the instance is nullptr, create itif (tmp == nullptr) {std::lock_guard<std::mutex> lock(mtx);  // Lock only during initializationtmp = instance.load(std::memory_order_relaxed);  // Check again inside the lockif (tmp == nullptr) {tmp = new Logger();  // Create a new instanceinstance.store(tmp, std::memory_order_release);  // Atomically set the instance}}return tmp;}void Log(const std::string& message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}  // Private constructor to prevent direct instantiationstatic std::atomic<Logger*> instance;  // Atomic pointer to the Singleton instancestatic std::mutex mtx;  // Mutex to protect initialization
};// Initialize the atomic pointer and mutex
std::atomic<Logger*> Logger::instance(nullptr);
std::mutex Logger::mtx;

Version 3.2 双重检查锁版本 Atomic-only

class Logger {
public:static Logger* GetInstance() {// First, attempt to load the current instance atomicallyLogger* tmp = instance.load(std::memory_order_acquire);// If the instance is nullptr, create itif (tmp == nullptr) {tmp = new Logger();  // Create a new instance// Atomically set the instance if no other thread has done soif (!instance.compare_exchange_strong(tmp, tmp)) {delete tmp; // Another thread won the race, delete the temporary instancetmp = instance.load(std::memory_order_acquire); // Reload the instance}}return tmp;}void Log(const std::string& message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}  // Private constructor to prevent direct instantiationstatic std::atomic<Logger*> instance;  // Atomic pointer to the Singleton instance
};// Initialize the atomic pointer to nullptr
std::atomic<Logger*> Logger::instance(nullptr);

Version 3 两种方式对比

  • Only Atomic:

    • Atomic Check: We first check the instance atomically with instance.load. If it’s nullptr, we attempt to create the instance using new.
    • Atomic Set: We use compare_exchange_strong to ensure that only one thread creates the instance. If another thread has already created the instance, it returns the existing one.
    • No Mutex: There is no mutex involved here. The atomic operations ensure thread safety during the initialization phase.
  • Atomic + Mutex:

    • Atomic First Check: The first check of the instance pointer is atomic using instance.load.
    • Mutex Locking: If the instance is nullptr, we lock a mutex (std::mutex mtx) to synchronize access during the actual creation of the instance.
    • Double Check Inside Lock: After acquiring the mutex, we perform another check of the instance. This prevents other threads from creating multiple instances if they were waiting on the mutex.
    • Atomic Set: We use instance.store to atomically set the instance pointer once it’s initialized.

  • Comparison of Effectiveness:
FactorAtomic-onlyAtomic + Mutex
InitializationAtomic operations ensure safe initialization.Mutex ensures exclusive access during initialization.
Post-Initialization AccessLock-free after initialization.Mutex locking still required to access instance.
Performance (High Concurrency)High performance: No lock contention after init.Slower due to mutex locking, even after initialization.
Scalability (Concurrency)Highly scalable: No locks post-initialization.Less scalable: Mutex lock can cause contention.
Memory ConsistencyEnsured via atomic operations and memory_order_acquire/release.Ensured by std::mutex for synchronization.
SimplicitySlightly more complex due to atomic operations.Simpler for developers familiar with mutexes.
  • Atomic-only approach is more effective in high-concurrency environments, especially when you expect many threads accessing the Singleton. Since the initialization is thread-safe and lock-free after the instance is created, it scales much better than the mutex-based approach.

  • Atomic + Mutex approach might be easier to understand for developers familiar with mutexes and might work well in lower-concurrency environments. However, the mutex adds overhead for each access, and if the program has many threads, it will result in contention and slower performance.

  • If you are building a highly concurrent system, prefer the atomic-only approach, as it will perform better with minimal locking overhead.

  • If you have a simpler, lower-concurrency application, using atomic + mutex might be a good trade-off because it provides simplicity and guarantees correct initialization with easy-to-understand synchronization.

2 引用版本

Version 1 简单版本 不推荐

class Logger {
public:static Logger &GetInstance() {return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:static Logger instance;Logger() {}
};Logger Logger::instance;

Version 2 初始化安全版本

c++机制保证初始化安全

class Logger {
public:static Logger& GetInstance() {static Logger instance;return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}
};

Version 3 初始化+操作安全版本

增加操作安全

class Logger {
public:static Logger &GetInstance() {static Logger instance;return instance;}void Log(const std::string &message) {std::lock_guard<std::mutex> lk(mtx);std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}std::mutex mtx;
};

Explanation

初始化过程线程安全原因:

  1. Static Local Variable:

    • In the GetInstance() method, we declare a static local variable instance.

      • static Logger instance; ensures that instance is only created once and persists for the entire lifetime of the program.
  2. First-Time Initialization:

    • The first time GetInstance() is called, the static variable instance is initialized. This is where the thread-safety comes into play. The C++11 standard guarantees that the initialization of a static local variable will be thread-safe.
    • If multiple threads try to call GetInstance() simultaneously, only one thread will initialize the instance. The other threads will wait until the initialization is complete, and then they will all see the same instance when they call GetInstance() again.
  3. Thread-Safe Static Initialization:

    • The C++11 guarantee ensures that even if multiple threads try to initialize the instance simultaneously, the static variable will only be initialized once. The other threads will see the already initialized object, which eliminates any race condition.
  4. Post-Initialization Access:

    • After initialization, the reference instance is ready for access, and since it is a static variable, it is always available. There is no locking required for accessing instance after it is initialized, making access very efficient.
  5. No Mutex or Atomic Operations:

    • Since the C++ standard guarantees thread-safe initialization of static local variables, there is no need for additional synchronization mechanisms such as mutexes or atomic operations. The instance is initialized only once, and once it is initialized, it is ready for fast, lock-free access.

Comparison

FactorAtomic-only SingletonAtomic + Mutex SingletonReference Singleton
Thread-Safe InitializationThread-safe initialization using atomic operations.Thread-safe initialization using atomic + mutex locking.Guaranteed thread-safe initialization due to static storage duration in C++11.
Memory ManagementRequires dynamic memory allocation (using new).Requires dynamic memory allocation (using new).No dynamic memory allocation; the instance is static.
Post-Initialization AccessLock-free after initialization, very fast.Mutex still required for each access.Lock-free after initialization, very fast.
Performance (High Concurrency)Very high performance due to lock-free access.Lower performance due to mutex lock overhead.Very high performance with no locking or atomic ops.
Scalability (Concurrency)Highly scalable with minimal contention.Less scalable due to mutex contention.Highly scalable since there’s no contention.
SimplicityMore complex, requires understanding of atomic operations.More complex due to mutex usage and atomic operations.Simpler and more straightforward.
Memory UsageRequires dynamic memory allocation for the Singleton.Requires dynamic memory allocation for the Singleton.No dynamic memory allocation, very efficient.
Lifetime ManagementRequires manual cleanup or reliance on smart pointers.Requires manual cleanup or reliance on smart pointers.Managed automatically by the compiler with static duration.
SafetyThread-safe, but requires careful handling of atomic ops.Thread-safe, but introduces locking overhead.Thread-safe due to the C++ static initialization guarantee, no locking needed.
Use CaseSuitable for high-concurrency, dynamic memory applications where you need to fine-tune memory allocation.Suitable for high-concurrency, but mutex introduces some overhead in high-load
http://www.dtcms.com/wzjs/250206.html

相关文章:

  • wordpress 律师事务所模板seo整站优化吧
  • 企业营销网站建设策划书企业网站制作步骤
  • 电商网站开发建设搜索引擎营销策划方案
  • 网站分为几种百度网首页登录入口
  • 做网站 需要 域名 空间短网址
  • 湖南土特产销售网网站建设制作奶糖 seo 博客
  • 用asp做网站营销和销售的区别
  • 以下哪个域名是做游戏网站的百度识图以图搜图
  • 一台主机做两个网站推广app接单网
  • 如何用腾讯云做网站百度指数首页
  • 婚庆公司服务内容长沙seo男团
  • 网页制作与网站建设宝典pdf营销型网站建设套餐
  • 武汉哪里做网站好新闻发稿发布平台
  • 免费的b2b网站可以做外贸找公司做网站多少钱
  • 最专业的佛山网站建设价格seo网站优化培训找哪些
  • 网站站群建设方案企业内训机构
  • cad做彩图那个网站应用好用湖南长沙疫情最新消息
  • 海南网站建设优化排名产品互联网营销推广
  • 网站用vps做dns站长工具流量统计
  • wordpress搬家到本地温州seo团队
  • 做推广网站需要商标吗成都seo顾问
  • 新品发布会致辞网站seo诊断报告怎么写
  • 福州网站建设服务价格最实惠电商运营培训班
  • 股票交易系统杭州百度百家号seo优化排名
  • 深圳贷款网站建设app拉新一手渠道商
  • 网站接单平台旅行网站排名前十名
  • edu网站一般谁做的十大营销模式
  • 电商网站建设实训(互联网营销大赛)免费b站推广网站下载
  • 学做名片的网站百度识图 上传图片
  • 做数据的网站有哪些长沙快速排名优化