当前位置: 首页 > wzjs >正文

wordpress网址设置seo搜索引擎优化内容

wordpress网址设置,seo搜索引擎优化内容,企业网站管理系统 免费,如何给网站做下载附件线性探测哈希表性能测试实验报告 1. 实验目的 编程实现线性探测哈希表。编程测试线性探测哈希表。了解线性探测哈希表的性能特征,并运行程序进行验证。 2. 实验背景与理论基础 哈希表是一种高效的数据结构,用于实现符号表(Symbol Table&a…

线性探测哈希表性能测试实验报告

1. 实验目的

  • 编程实现线性探测哈希表。
  • 编程测试线性探测哈希表。
  • 了解线性探测哈希表的性能特征,并运行程序进行验证。

2. 实验背景与理论基础

哈希表是一种高效的数据结构,用于实现符号表(Symbol Table),支持快速的插入、查找和删除操作。当不同的键哈希到同一个地址时,会发生冲突。线性探测(Linear Probing)是一种常见的开放寻址(Open Addressing)冲突解决策略,它通过探测当前位置的下一个连续槽位来寻找空闲位置。

线性探测的性能分析主要关注查找操作所需的平均探测次数。根据教材,当冲突通过线性探测解决时,哈希表大小为 M M M 且包含 N = α M N = \alpha M N=αM 个键时,其平均探测次数有以下理论近似值(Property 14.3):

  • 查找失败 (misses) 的平均探测次数:
    1 2 ( 1 + 1 ( 1 − α ) 2 ) \frac{1}{2}\left(1 + \frac{1}{(1-\alpha)^2}\right) 21(1+(1α)21)

其中, α = N / M \alpha = N/M α=N/M 是哈希表的负载因子。

此外,查找失败的平均成本也可以通过分析哈希表中形成的聚簇(clusters)来计算:
查找失败的平均成本 = 1 + N 2 M + ∑ i k t i 2 2 M \text{查找失败的平均成本} = 1+\frac{N}{2M}+\frac{\sum_i^kt_i^2}{2M} 查找失败的平均成本=1+2MN+2Mikti2
其中, t i t_i ti 是插入过程中形成的第 i i i 个聚簇的长度,总共有 k k k 个聚簇。

本次实验将重点关注查找失败的平均成本

根据实验设计,我们将 N / 2 N/2 N/2 个随机整数插入到大小为 N N N 的哈希表中,因此负载因子 α = ( N / 2 ) / N = 0.5 \alpha = (N/2) / N = 0.5 α=(N/2)/N=0.5。代入查找失败的理论公式,可计算出在此负载因子下的理论平均成本:
理论平均成本 = 1 2 ( 1 + 1 ( 1 − 0.5 ) 2 ) = 2.5 \text{理论平均成本} = \frac{1}{2}\left(1 + \frac{1}{(1-0.5)^2}\right)= 2.5 理论平均成本=21(1+(10.5)21)=2.5
因此,对于本次实验中的所有测试用例,理论上的查找失败平均成本应为 2.5 次探测。

3. 实验设计与实现

实验任务: 编写程序实现 Exercise 14.28,即插入 N / 2 N/2 N/2 个随机整数到大小为 N N N 的哈希表中,并计算查找失败的平均成本。

Exercise1428

程序实现

  1. 哈希表结构: 使用数组 st 作为哈希表,存储 Item 指针。Item 包含 KeyValue
  2. 初始化 (STinit): 根据传入的最大元素数量 max,将哈希表大小 M 设置为 2 * max。由于实验要求插入 N / 2 N/2 N/2 个元素到大小为 N N N 的表,所以 M 在这里对应练习题中的 N N N
  3. 哈希函数 (hash): 采用简单的整数哈希函数 (11 * x) % M
  4. 插入 (STinsert): 采用线性探测解决冲突。如果初始哈希位置被占用,则向右(索引递增)探测直到找到空槽位。
  5. 簇分析 (analyze_clusters):
    • 遍历哈希表,识别所有形成的聚簇。一个聚簇被定义为连续的被占用槽位序列。
    • 计算每个聚簇的长度 t i t_i ti
    • 累加所有聚簇长度的平方和 ∑ t i 2 \sum t_i^2 ti2
    • 根据公式 1 + N 2 M + ∑ i k t i 2 2 M 1+\frac{N}{2M}+\frac{\sum_i^kt_i^2}{2M} 1+2MN+2Mikti2 计算出基于簇长度的查找失败平均成本(即实验值 average_cost)。
    • 同时,根据负载因子 α = N / M \alpha = N/M α=N/M 和 Property 14.3 的公式计算理论平均成本(theory_cost)。
    • 打印实验值和理论值以便对比。
  6. 测试用例: 设计了四组测试,分别对应 N = 10 3 , 10 4 , 10 5 , 10 6 N=10^{3}, 10^{4}, 10^{5}, 10^{6} N=103,104,105,106。在每个测试中,向表中插入 N / 2 N/2 N/2 个随机整数。
    • test_insert_1000(): M=1000, 插入 500 个随机数。
    • test_insert_10000(): M=10000, 插入 5000 个随机数。
    • test_insert_100000(): M=100000, 插入 50000 个随机数。
    • test_insert_1000000(): M=1000000, 插入 500000 个随机数。
  7. 随机数生成: 使用 srand(time(NULL)) 进行随机数播种,以确保每次程序运行生成不同的随机序列。

4. 实验结果

程序运行后,得到以下输出:

Table(M=1000):the average cost of unsuccessful search in that table is 1.558000, theory cost: 2.500000
Table(M=10000):the average cost of unsuccessful search in that table is 2.488200, theory cost: 2.500000
Table(M=100000):the average cost of unsuccessful search in that table is 2.481630, theory cost: 2.500000
Table(M=1000000):the average cost of unsuccessful search in that table is 2.503940, theory cost: 2.500000

5. 结果分析

这些结果清晰地展示了线性探测哈希表在不同规模下,查找失败平均成本的实验值与理论值之间的关系。

  1. M=1000 (表大小为 1000,插入 500 个元素):

    • 实验平均成本为 1.558000,而理论平均成本为 2.500000。
    • 分析: 在这种较小规模的哈希表中,实验结果与理论值存在较明显的偏差。这是因为理论平均值是基于大量随机插入的统计结果,而单次运行(尤其在数据量较小的情况下)可能因随机数的具体序列偶然地形成了比平均情况更少或更短的簇,从而导致实际观察到的探测次数低于理论预测。这反映了小样本量下的统计波动性。
  2. M=10000 (表大小为 10000,插入 5000 个元素):

    • 实验平均成本为 2.488200,理论平均成本为 2.500000。
    • 分析: 实验结果与理论值已非常接近。这表明随着哈希表规模的增大(以及插入元素数量的增加),线性探测在随机插入下的实际行为开始向其统计平均值收敛。随机性带来的局部波动效应被更大量的数据所平均。
  3. M=100000 (表大小为 100000,插入 50000 个元素):

    • 实验平均成本为 2.481630,理论平均成本为 2.500000。
    • 分析: 实验结果继续保持与理论值的高度吻合,进一步证实了这种收敛性。
  4. M=1000000 (表大小为 1000000,插入 500000 个元素):

    • 实验平均成本为 2.503940,理论平均成本为 2.500000。
    • 分析: 实验结果与理论值几乎完全一致,仅存在微小的正常波动。这完美地展示了当数据量足够大时,线性探测在半满情况下的性能是如何精确符合理论模型的。

6. 结论

该程序 Exercise1428 的运行结果有力地验证了以下几点:

  • 理论公式的有效性: 教材中关于线性探测查找失败平均成本的理论公式 (Property 14.3) 在实践中是准确的预测器。通过实验结果与理论值的对比,可以清晰地看到二者的高度吻合,尤其是在大规模数据量下。
  • 规模效应: 随着哈希表规模的增大,线性探测在随机插入条件下的实际性能会越来越接近其理论平均值。小规模表的结果可能因随机性而有较大波动,但随着 N N N 的增长,这种波动逐渐减小。
  • 线性探测的特性: 即使在负载因子为 0.5 0.5 0.5(即哈希表半满)这种相对较低的情况下,查找失败的平均成本也不是理想的 1 1 1 次探测,而是大约 2.5 2.5 2.5 次。这反映了线性探测固有的“初级聚簇”(primary clustering)问题:即使表不满,连续的占用槽位也会导致查找路径变长,从而产生额外的探测成本。这也解释了为什么在线性探测中,通常建议将负载因子保持在更低的水平(例如,远小于 0.5),以避免性能随着表接近满而急剧下降。

本次实验成功地编程实现了线性探测哈希表,并通过对比实验结果与理论预测,加深了对线性探测性能特征及其“初级聚簇”问题的理解。

http://www.dtcms.com/wzjs/248509.html

相关文章:

  • 周浦手机网站建设公司营销网络图
  • 做网站先建立模型app推广在哪里可以接单
  • 做网站的疑问有哪些百度用户服务中心电话
  • 站长工具是什么网站模板之家免费下载
  • 虚拟空间可以做视频网站么代刷网站推广免费
  • wordpress 关站站长查询域名
  • 做网站开发要学什么语言太原百度关键词排名
  • 建立网站时要采用一定的链接结构可采用的基本方式有关键字排名查询
  • 给甜品网站做seo厦门人才网app
  • 江苏网站建设平台桌子seo关键词
  • 网站编辑是什么东莞快速优化排名
  • 网站运营每天做的优化网站怎么做
  • 网上购物网站设计百度百家官网入口
  • 微信小程序网站开发网站seo整站优化
  • 化工网站源码关键字挖掘机爱站网
  • wordpress获取当前子分类整站优化推广
  • axure rp可以做网站吗京东seo搜索优化
  • 北京pc端网站开发seo技术教程
  • 南京建设行政主管部门网站口碑营销的产品有哪些
  • 广东网站设计推荐免费发布产品的网站
  • 上海南桥网站建设高端网站建设
  • 网站设计经典案例分析seo优化方法有哪些
  • 网站开发加维护大概多少钱域名查询138ip
  • wordpress为自定义文章类型模板杭州百度推广优化排名
  • 网站设计一个版块东莞网站推广及优化
  • 电脑做网站主机空间如何将网站的关键词排名优化
  • 电商网站运营步骤关键词全网搜索
  • 国际婚恋网站做翻译合法吗seo策略主要包括
  • 网站设计理念广州信息流推广公司
  • 哪个网站做外贸浏览器搜索引擎大全