当前位置: 首页 > wzjs >正文

制作一个网站步骤百度导航

制作一个网站步骤,百度导航,惠州市住房和城乡建设局网站,做卡盟网站Lecture1 绪论 写在前面: 科学、技术、工程、应用 科学:研究是什么、为什么的问题; 技术:研究怎么做的问题; 工程:怎么可以做的多快好省; 应用:实际的使用; 举例来…

Lecture1 绪论

写在前面:

科学、技术、工程、应用
    1. 科学:研究是什么、为什么的问题;

    2. 技术:研究怎么做的问题;

    3. 工程:怎么可以做的多快好省

    4. 应用:实际的使用;

  • 举例来说,科学可以发现“陶瓷可以做刀”,技术就是研究“怎样在实验室做刀”,工程是研究“工业化如何做刀”,应用就是”用到砍树“

  • 本课程学习的内容主要是在学习1,2层级的内容,值得注意的是,下层次的产物比上层次更容易过时

强人工智能与弱人工智能

强人工智能的目的是”造人“,弱人工智能的目的是”造工具“;

人工智能的发展阶段
  • 推理期 -> 知识期 -> 学习期;

机器学习

  • 经典定义:利用经验改善系统自身的性能
  • 机器学习有什么用?
    • 我们今天进入了大数据时代,但是 大数据 ≠ \ne = 大价值,
      机器学习就像是挖掘金矿的铲子,目的是发掘出有价值的部分
  • 机器学习已经无处不在
  • 机器学习并非一切皆可学:
    • 特征信息不充分:比如重要的特征信息没有获得
    • 样本信息不充分:比如只有很少的样本数据
机器学习的理论基础 PAC
  • 计算学习理论,Leslie Valiant(莱斯利 维利昂特)

P A C ( P r o b a b l y A p p r o x i m a t e l y C o r r e c t , 概率近似正确 ) P ( ∣ f ( x ) − y ∣ ≤ ϵ ) ≥ 1 − δ (1) PAC(Probably Approximately Correct,概率近似正确) \newline P(|f(x)-y| \le \epsilon) \ge 1 - \delta \tag{1} PAC(ProbablyApproximatelyCorrect,概率近似正确)P(f(x)yϵ)1δ(1)

机器学习解决的问题常常是 NP、 NPC 这样的问题;而理论基础就在于 PAC

基本术语

监督学习、无监督学习、半监督学习
一些术语
独立同分布假设(i.i.d)
假设空间与版本空间

我们可以这样来理解”学习过程“:

  • 学习过程就是在所有的假设组成的空间中进行搜索的过程

在很多语境中,学习 - 搜索 - 优化,这三个词语具有相似的内涵

这句话很值得深思,建议读者常常试着从这样的思路中考虑问题

h ^ ← min ⁡ h ∈ H O b j ( h ) \hat h \leftarrow \min_{h \in \mathcal{H} } Obj(h) h^hHminObj(h)

结合上面的公式来理解,学习 - 搜索 - 优化 就统一在了一起

从版本空间到归纳偏好

我们把与训练集一致的假设集合称为”版本空间“,这里隐含的是:有多个假设是符合训练集的
在这种情况下,我们就要考虑: 究竟要学习什么哪一个模型?
因此,我们就因除了 归纳偏好 这个概念

归纳偏好:

归纳偏好的其中一种原则是 ”奥卡姆剃刀原则“,也就是 ”若非必要,勿增实体“;
但是下面的 NFL定理,”没有免费的午餐“ 指出了任何一种算法都有自己不适用的场景;
也就是说,不存在一种普适的原则,机器学习还是要讲究 具体问题具体分析

NFL定理(No Free Lunch)

NFL定理
NFL定理:一个算法 L a \mathfrak{L}_a La 若在某些问题上比另一个算法 L b \mathfrak{L}_b Lb好,必定存在另一些问题,$\mathfrak{L}_b $比 L a \mathfrak{L}_a La更好

证明:
简单起见,假设样本空间 X \mathcal{X} X 和假设空间 H \mathcal{H} H 离散

∑ E o t e ( L a ∣ X , f ) = ∑ f ∑ h ∑ x ∈ X − X P ( x ) ⋅ I { h ( x ) ≠ f ( x ) } ⋅ P ( h ∣ X , L a ) = ∑ x ∈ X − X P ( X ) ∑ h P ( h ∣ X , L a ) ⋅ ∑ f I { h ( x ) ≠ f ( x ) } 这里关注的是,无论 h 如何,在均匀分布视角下,都是可以直接求和的 = ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) ⋅ 1 2 2 ∣ X ∣ = 2 ∣ X ∣ − 1 ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) = 2 ∣ X ∣ − 1 ∑ x ∈ X − X P ( x ) ⋅ 1 \sum E_{ote}(\mathfrak{L}_a |X,f) \newline = \sum_f \sum_h \sum_{x \in \mathcal{X} - X} P(x) \cdot I\{h(x) \ne f(x) \} \cdot P(h|X, \mathfrak{L}_a) \newline = \sum_{x \in \mathcal{X}-X} P(X) \sum_h P(h | X, \mathfrak{L}_a) \cdot \sum_f I \{{h(x)} \ne f(x) \} \newline 这里关注的是,无论h如何,在均匀分布视角下,都是可以直接求和的 \newline =\sum_{x \in \mathfrak{X} - X} P(x) \sum_h P(h |X, \mathfrak{L}_a) \cdot \frac 1 2 2^{|\mathcal{X}|} \newline = 2^{|\mathcal{X}| - 1} \sum_{x \in \mathcal {X} - X} P(x) \sum_h P(h| X, \mathfrak{L}_a) \newline = 2^{|\mathcal{X}| - 1} \sum_{x \in \mathcal {X} - X} P(x) \cdot 1 Eote(LaX,f)=fhxXXP(x)I{h(x)=f(x)}P(hX,La)=xXXP(X)hP(hX,La)fI{h(x)=f(x)}这里关注的是,无论h如何,在均匀分布视角下,都是可以直接求和的=xXXP(x)hP(hX,La)212X=2X1xXXP(x)hP(hX,La)=2X1xXXP(x)1

  • 我们可以看到,最终的总误差保证与学习算法是无关的!!
http://www.dtcms.com/wzjs/239998.html

相关文章:

  • 网上购物网站建设的实训报告济南seo官网优化
  • 东莞网站开发定制八八网
  • 文字转图片生成器在线制作seo职业培训班
  • 美食网站开发报告济南百度推广代理商
  • 做网站的需要注册商标吗代写文章接单平台
  • 公司做网站app入什么科目北京优化seo
  • 工商执照代理代办公司正版搜索引擎优化
  • 网站建设合同书下载微信指数查询
  • 深圳住建局官网登录入口seo优化快速排名技术
  • 成都微信微网站建设如何进行网站的推广
  • 网站开发和系统开发区别百度云电脑网页版入口
  • php网站模版网络营销的概念是什么
  • 阳信网站建设网站seo整站优化
  • 做仿制网站国内新闻最近新闻今天
  • 温州网站建设小程序seo是什么东西
  • 加强网站的建设与管理北京网站制作建设公司
  • 门户网站开发需求分析广告多的网站
  • 上海网站推广哪家好百度识图搜索网页版
  • 做慕课的网站网店推广营销方案
  • 武汉网站建设武汉网络公司seo高端培训
  • 服务器wordpress怎么做神马搜索排名seo
  • 网站建设公司代理商天门网站建设
  • 做网站需要会编程语言吗免费推广引流app
  • 网站频繁改版竞价推广开户多少钱
  • 动态网站开发作业报告廊坊首页霸屏排名优化
  • 网站服务器备案查询网站网络营销常用的工具和方法
  • 广告设计公司怎么找业务安新seo优化排名网站
  • 有做销售产品的网站网站建设关键词排名
  • 旅游做攻略网站免费企业网站模板源码
  • 一个人只做网站的流程抖音优化是什么意思