当前位置: 首页 > wzjs >正文

服务器怎样建设网站湖南网站seo公司

服务器怎样建设网站,湖南网站seo公司,王爷会读心,淮上网站建设在深度学习领域,YOLO(You Only Look Once)系列模型因其高效和准确性而广受欢迎。然而,随着项目需求的变化,有时我们需要对预训练模型的配置文件进行调整。本文将详细介绍如何使用Python脚本自动转换YOLOv5的配置文件到…

在深度学习领域,YOLO(You Only Look Once)系列模型因其高效和准确性而广受欢迎。然而,随着项目需求的变化,有时我们需要对预训练模型的配置文件进行调整。本文将详细介绍如何使用Python脚本自动转换YOLOv5的配置文件到https://github.com/ultralytics/ultralytics,并解释每个步骤的目的和实现方法。

准备工作

首先,确保安装了必要的库:

pip install pyyaml

代码详解

定义格式化和过滤函数

def format_and_filter_list(lst):formatted_items = []for item in lst:if isinstance(item, list):processed_item = format_and_filter_list(item)if processed_item:  # 只添加非空列表formatted_items.append(processed_item)elif isinstance(item, str):if item == 'nearest':formatted_items.append(f"'{item}'")elif item != 'anchors':  # 过滤掉 'anchors'formatted_items.append(item)else:formatted_items.append(str(item))return f"[{', '.join(formatted_items)}]"

定义转换配置函数

def transform_config(original_config):transformed = {'nc': original_config['nc'],  # number of classes'scales': {'n': [original_config['depth_multiple'], original_config['width_multiple'], 1024]},'backbone': [],'head': []}# Transform backbonefor layer in original_config['backbone']:if not isinstance(layer, list):layer = [layer]transformed['backbone'].append(layer)# Adjust the head to match the desired format, also updating nc and anchors usagefor i, layer in enumerate(original_config['head']):if not isinstance(layer, list):layer = [layer]if isinstance(layer[0], list) and len(layer[0]) > 3 and layer[0][3] == 'Detect':layer[0][3] = ['nc', 'anchors']transformed['head'].append([layer[0]])else:transformed['head'].append(layer)# Special case: update the final Detect layer configurationif transformed['head'] and isinstance(transformed['head'][-1], list) and transformed['head'][-1]:last_layer = transformed['head'][-1]if isinstance(last_layer[0], list) and len(last_layer[0]) > 3:last_layer[0][3] = ['nc']return transformed

定义主函数以更改YAML文件


def change_yaml(yolov5_config):# Check if input file existsif not os.path.exists(yolov5_config):print(f"Error: Input file '{yolov5_config}' does not exist.")else:old_path = os.path.dirname(yolov5_config)save_path = os.path.dirname(old_path)new_yaml_name_path = os.path.join(save_path, "yolov5_" + os.path.basename(yolov5_config))# Load your YAML filewith open(yolov5_config, 'r') as file:try:original_config = yaml.safe_load(file)except yaml.YAMLError as exc:print(f"Error: Failed to parse YAML file. {exc}")exit(1)transformed_config = transform_config(original_config)# Ensure that each element in backbone and head is a listdef ensure_list_format(config_part):new_config_part = []for item in config_part:if not isinstance(item, list):item = [item]new_config_part.append(item)return new_config_parttransformed_config['backbone'] = ensure_list_format(transformed_config['backbone'])transformed_config['head'] = ensure_list_format(transformed_config['head'])# Generate the formatted YAML contentformatted_yaml_content = f"""# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license# Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect# Parameters
nc: {transformed_config['nc']} # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: {transformed_config['scales']['n']}
# YOLOv5 v6.0 backbone
backbone:
"""for layer in transformed_config['backbone']:layer = format_and_filter_list(layer)print(layer)formatted_yaml_content += f"  - {layer}\n"formatted_yaml_content += """
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
head:
"""for layer in transformed_config['head']:print(layer)if isinstance(layer, list) and layer[2] == 'Conv':formatted_yaml_content += '\n'layer = format_and_filter_list(layer)print(layer)formatted_yaml_content += f"  - {layer}\n"# Save the transformed configuration to a new YAML filewith open(new_yaml_name_path, 'w') as file:file.write(formatted_yaml_content)print(f"Configuration has been transformed and saved to '{new_yaml_name_path}'.")

批量处理多个配置文件

input_path = "/media/lindsay/data/ultralytics-main/ultralytics/cfg/models/v5/yolov5"
input_path_list = [os.path.join(input_path, i) for i in os.listdir(input_path)]
for i in input_path_list:change_yaml(i)

总结

通过上述步骤,您可以轻松地将YOLOv5的配置文件转换为ultralytics-yolov8所需的格式,并且可以批量处理多个配置文件。这个脚本不仅可以帮助您节省时间,还能减少手动操作带来的错误。希望这篇博客能为您提供有价值的指导,让您更高效地管理深度学习项目的配置文件。

完整代码

import yaml
import os# 函数用于格式化列表为所需形式
def format_and_filter_list(lst):formatted_items = []for item in lst:if isinstance(item, list):# 如果是列表类型,则递归调用此函数进行格式化和过滤processed_item = format_and_filter_list(item)if processed_item:  # 只添加非空列表formatted_items.append(processed_item)elif isinstance(item, str):# 特殊处理需要保留引号的字符串if item == 'nearest':formatted_items.append(f"'{item}'")elif item != 'anchors':  # 过滤掉 'anchors'formatted_items.append(item)else:# 其他类型直接转换成字符串表示formatted_items.append(str(item))# 返回格式化后的列表字符串表示return f"[{', '.join(formatted_items)}]"def transform_config(original_config):transformed = {'nc': original_config['nc'],  # number of classes'scales': {'n': [original_config['depth_multiple'], original_config['width_multiple'], 1024]},'backbone': [],'head': []}# Transform backbonefor layer in original_config['backbone']:if not isinstance(layer, list):layer = [layer]transformed['backbone'].append(layer)# Adjust the head to match the desired format, also updating nc and anchors usagefor i, layer in enumerate(original_config['head']):if not isinstance(layer, list):layer = [layer]if isinstance(layer[0], list) and len(layer[0]) > 3 and layer[0][3] == 'Detect':# Update Detect layer to use 'nc' instead of specific numbers for classeslayer[0][3] = ['nc', 'anchors']transformed['head'].append([layer[0]])else:transformed['head'].append(layer)# Special case: update the final Detect layer configurationif transformed['head'] and isinstance(transformed['head'][-1], list) and transformed['head'][-1]:last_layer = transformed['head'][-1]if isinstance(last_layer[0], list) and len(last_layer[0]) > 3:last_layer[0][3] = ['nc']return transformeddef change_yaml(yolov5_config):# Check if input file existsif not os.path.exists(yolov5_config):print(f"Error: Input file '{yolov5_config}' does not exist.")else:old_path = os.path.dirname(yolov5_config)save_path = os.path.dirname(old_path)new_yaml_name_path = os.path.join(save_path, "yolov5_" + os.path.basename(yolov5_config))# Load your YAML filewith open(yolov5_config, 'r') as file:try:original_config = yaml.safe_load(file)except yaml.YAMLError as exc:print(f"Error: Failed to parse YAML file. {exc}")exit(1)transformed_config = transform_config(original_config)# Ensure that each element in backbone and head is a listdef ensure_list_format(config_part):new_config_part = []for item in config_part:if not isinstance(item, list):item = [item]new_config_part.append(item)return new_config_parttransformed_config['backbone'] = ensure_list_format(transformed_config['backbone'])transformed_config['head'] = ensure_list_format(transformed_config['head'])# Generate the formatted YAML contentformatted_yaml_content = f"""# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license# Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect# Parameters
nc: {transformed_config['nc']} # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: {transformed_config['scales']['n']}
# YOLOv5 v6.0 backbone
backbone:
"""for layer in transformed_config['backbone']:layer = format_and_filter_list(layer)print(layer)formatted_yaml_content += f"  - {layer}\n"formatted_yaml_content += """
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
head:
"""for layer in transformed_config['head']:print(layer)if isinstance(layer, list) and layer[2] == 'Conv':formatted_yaml_content += '\n'layer = format_and_filter_list(layer)print(layer)formatted_yaml_content += f"  - {layer}\n"# Save the transformed configuration to a new YAML filewith open(new_yaml_name_path, 'w') as file:file.write(formatted_yaml_content)print(f"Configuration has been transformed and saved to '{new_yaml_name_path}'.")input_path = "/media/lindsay/data/ultralytics-main/ultralytics/cfg/models/v5/yolov5"
input_path_list = [os.path.join(input_path, i) for i in os.listdir(input_path)]
for i in input_path_list:change_yaml(i)
http://www.dtcms.com/wzjs/227500.html

相关文章:

  • asp 制作网站开发搜索引擎的两个基本方法
  • 网站制作行业越来越难做网站外链购买
  • 网站建设管理工作自查报告河南企业站seo
  • wordpress收费下载大侠seo外链自动群发工具
  • 南通网站定制公司百度域名收录
  • 做网站能挣钱吗网站seo分析报告
  • 合肥市住房和城乡建设厅网站百度收录提交网站后多久收录
  • 上海网站建设公司网站百度惠生活推广怎么收费
  • 交互做的好网站网络营销师主要做什么
  • 前端电商网站设计论文青岛seo关键词排名
  • 网站建设和app开发营销方法
  • 旅游网站 div css 模板下载软件开发公司
  • 中方元建设工程 网站百度一下百度网页版
  • 上海建设工程网站手机百度免费下载
  • b2b官方网站seo新手入门教程
  • 做网站的一个专题广东东莞疫情最新消息今天又封了
  • 甘肃网站制作公司有哪些百度投放广告平台
  • 湖南网站建设欧黎明百度热搜关键词排名
  • 制作网站怎么做滚动条百度收录网站多久
  • 创建网站企业高端网站建设案例
  • 网站开发的pc或移动端模板建站多少钱
  • 香橼做空机构网站搜索引擎营销的原理是什么
  • 网页设计师考证多少钱seo深圳培训班
  • 成都公司的网站制作谷歌账号注册入口官网
  • 扬州哪家公司做网站比较好百度查询入口
  • 幻灯片在什么网站做今日头条国际军事新闻
  • google网站地图格式seo手机搜索快速排名
  • 宣化网站制作公司怎么做一个公司网站
  • 宜都市网站建设云南疫情最新情况
  • 怎么维护网站教程百度搜索引擎盘搜搜