当前位置: 首页 > wzjs >正文

问答类咨询网站的建设企业网站制作公司

问答类咨询网站的建设,企业网站制作公司,怎么免费上传网页网站,四川可以做宣传的网站文章目录 动态规划01背包小练一下01背包网格图上的DP完全背包 最长公共字符串最长递增子序列 动态规划 动态规划:确定好状态方程,我们常常是确定前 当状态来到 i 时,前 i 个物体的状态是怎么样的,我们并不是从一个点去考虑&#x…

文章目录

  • 动态规划
    • 01背包
      • 小练一下
      • 01背包
      • 网格图上的DP
      • 完全背包
    • 最长公共字符串
    • 最长递增子序列

动态规划

在这里插入图片描述
在这里插入图片描述

  • 动态规划:确定好状态方程,我们常常是确定前 当状态来到 i 时,前 i 个物体的状态是怎么样的,我们并不是从一个点去考虑,也就是说虽然我们分割问题,但是问题是相互联系的,那么这就是区别于递归的本质区别

在这里插入图片描述

01背包

在这里插入图片描述
由于不能拆开,那就是DP 问题,如果能拆开,那就是贪心问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

小练一下

01背包

在这里插入图片描述

import os
import sys# 请在此输入您的代码N,V = map(int,input().split())w = []
v = []
w.append(0)
v.append(0)for i in range(N):a,b = map(int,input().split())w.append(a)v.append(b)dp = [[0]*(V+1) for _ in range(N+1)]for i in range(1,N+1):# 取出第i 个物品for j in range(V+1):if j-w[i]<0:dp[i][j]=dp[i-1][j]else:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])print(dp[N][V])

在这里插入图片描述
在这里插入图片描述

  • 可以对空间进行优化:只用添加两个变量来存储new,old 就是利用滚动数组,两个数组即可解决

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

import os
import sysV = int(input())#####箱子容量
n = int(input())####物品数量
l = [0]####各自体积
for i in range(n):####输入体积l.append(int(input()))
dp = [[0 for j in range(V+1)]for i in range(n+1)]for i in range(1,n+1):###for j in range(1,V+1):####if j < l[i]:####dp[i][j] = dp[i-1][j]else:dp[i][j]=max(dp[i-1][j],dp[i-1][j-l[i]]+l[i])###
print(V-dp[n][V])

同样的思路:还是用二维数组存储,dp[i][j]表示 前i 个物体在空间j 的情况下,所能放的空间的大小

网格图上的DP

在这里插入图片描述

  • 对于网格的问题,咋一看好像可以用搜索来解决,但是搜索的话可能就会超时,所以我们可以用动态规划来做,那么如何进行定义?
    dp[i][j] 就是走到(i,j) 的时候的路径数,那么就有 动态规划的式子 :
    dp[i][j] = dp[i-1][j] + dp[i][j-1] 得来
    对于不能到达的地方,就直接 设置dp 值为0即可
    巧妙地地方:让出发点以及🐎所在地点以及终点都偏移,这样就可以方便解决出界地问题
import os
import sys# 请在此输入您的代码bx, by, mx, my = map(int, input().split())bx += 2
by += 2
mx += 2
my += 2dp = [[0] * (30) for i in range(30)]s = [[False] * 30 for i in range(30)]dp[2][1] = 1
s[mx][my] = Trues[mx - 1][my - 2] = True
s[mx - 1][my + 2] = True
s[mx - 2][my - 1] = True
s[mx - 2][my + 1] = True
s[mx + 1][my - 2] = True
s[mx + 1][my + 2] = True
s[mx + 2][my - 1] = True
s[mx + 2][my + 1] = Truefor i in range(2, bx + 1):for j in range(2, by + 1):if s[i][j]:dp[i][j] = 0else:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]print(dp[bx][by])

完全背包

在这里插入图片描述

  • 完全背包问题就是在01 背包的基础上,每一件物品是没有个数的限制的,不过可以参照01 背包的思路,因为当第i 种物品的第一件物品就是01 背包问题,后面就是要考虑第 i 件物品
    状态方程
    1.dp[i][j] 表示前 i 种物品,在空间为 j 下能够装下的最大的价值
    2.那么当 pw[i] 第 i 件物品占用的体积大于 j 的时候,那么就只能
    dp[i][j] = dp[i-1][j]
    3.当pw[i] 第 i 件物品占用的体积小于等于 j 的时候,那么就是考虑第i 种物品选不选的问题了,也就是
    dp[i][j] = max(dp[i-1][j] ,dp[i][j-pw[i]]+pv[i])
    其中,dp[i-1][j] 是考虑不选第i 种物品,dp[i][j-pw[i]]+pv[i](01背包的本质区别)是在选了第i 种物品的基础上,再选几件的问题
import os
import sys# 请在此输入您的代码N,V = map(int ,input().split())
pw=[0]
pv=[0]
dp = [[0]*(V+1) for i in range(N+1)]for i in range(N):a,b = map(int,input().split())pw.append(a)pv.append(b)for i in range(1,N+1):for j in range(1,V+1):if j<pw[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = max(dp[i-1][j],dp[i][j-pw[i]]+pv[i])print(dp[N][V])

最长公共字符串

在这里插入图片描述

  • 对于这个问题,我们就要考虑从二维方面出发:
    dp[i][j] 表示前i 个 x 的字符 和前 j 个 y 的字符的最长的公共子序列的长度
    1.当x[i]==y[j] 的时候,那么就直接是dp[i][j] = dp[i-1][j-1] +1
    2.不相等的时候,就是dp[i][j] = max(dp[i-1][j],dp[i][j-1])

对于统计数目的话,还在研究:

import os
import sys# 请在此输入您的代码x = input()
y = input()# dp[i][j] 表示 x=xi 与 y=yj 时x与y 的最大的公共子序列的长度
lenx = len(x)
leny = len(y)dp = [[0]*(len(y)) for i in range(len(x))]for i in range(lenx):if x[i]==y[0]:dp[i][0]=1
for i in range(leny):if x[0]==y[i]:dp[0][i]=1for i in range(1,lenx):for j in range(1,leny):if x[i]==y[j]:dp[i][j]=dp[i-1][j-1]+1else:dp[i][j]=max(dp[i-1][j],dp[i][j-1])length =dp[lenx-1][leny-1]
sum=0
for i in range(lenx):for j in range(leny):if dp[i][j]==length:sum = sum +1sum = sum%100000000
print(length)
print(sum)

最长递增子序列

在这里插入图片描述
在这里插入图片描述

http://www.dtcms.com/wzjs/224044.html

相关文章:

  • 2019一个网站开发要多少钱百度关键词快速优化
  • 有没有帮忙做问卷调查的网站广西网站seo
  • 做网站网站关键词是什么提高工作效率的方法不正确的是
  • 深圳微商城网站制作网络营销好学吗
  • 外贸流程ppt武汉网站推广优化
  • 服装企业网站源码百度投放广告平台
  • WordPress怎么添加模板沧州网站推广优化
  • 有一个做ppt的网站吗seo推广软件代理
  • 沈阳公司做网站的it菜鸡网seo
  • 门户网站建设统计表百度权重怎么看
  • 手机网站 制作教程app开发网站
  • laravel 做网站东莞seo网络公司
  • 条幅在线设计网站我对网络营销的理解
  • 宝塔面板怎么做自己的网站美国疫情最新消息
  • 济南品牌网站建设公司线下推广的渠道和方法
  • 微云做网站今日头条新闻视频
  • 国内知名设计网站百度客服怎么联系
  • diy建站系统网络营销企业培训
  • wordpress播放网盘视频企业网站优化哪家好
  • 深圳网络推广优化win10优化软件
  • 网站开发概要设计邵阳seo优化
  • 五金弹簧东莞网站建设建站开发
  • 网站开发经理具备什么知识临沂seo网站管理
  • 石家庄做网站公司的电话爱站网长尾关键词搜索
  • 日本樱花云服务器wan长沙seo关键词排名
  • 北京住房与城乡建设网站长春网站建设公司
  • 58同城房产信息苏州百度快照优化排名
  • 贵州省城乡与建设厅网站网页怎么做
  • 做一个网站的详细教学怎样精选关键词进行网络搜索
  • 嘉兴平湖网站建设友情链接发布