当前位置: 首页 > wzjs >正文

公司网站模板凡建站温州高端网站建设

公司网站模板凡建站,温州高端网站建设,怎么区别做pc端和手机端网站,简述网站建设方法中文分词的基本原理及实现 1. 什么是词2. 基本原理3. 发展趋势:多数场景无需显式分词 信息处理的目标是使用计算机能够理解和产生自然语言。而自然语言理解和产生的前提是对语言能够做出全面的解析。 汉语词汇是语言中能够独立运用的最小的语言单位,是语…

中文分词的基本原理及实现

    • 1. 什么是词
    • 2. 基本原理
    • 3. 发展趋势:多数场景无需显式分词

信息处理的目标是使用计算机能够理解和产生自然语言。而自然语言理解和产生的前提是对语言能够做出全面的解析。

汉语词汇是语言中能够独立运用的最小的语言单位,是语言中的原子结构。由于中文缺乏类似英文的空格分隔,分词的准确性直接影响后续任务(如机器翻译、情感分析)的效果。因此,对中文进行分词就显得至关重要。

中文分词(Chinese Word Segmentation)是自然语言处理的基础任务,旨在将连续的中文字符序列切分成具有独立语义的词语。

以下从基本原理、主流方法、实现工具及挑战展开介绍。


1. 什么是词

古往今来,汉字虽然有5万多个,但常用的汉字大约仅有6000个。即便如此,其中很多汉字在日常生活中较少用到。然而,这些有限的汉字足以维持词汇的长期更新,因为扩大中文词汇的方法是通过构造汉字的复合新词,而不是创造新的字符来完成的。这就造成了汉语中所谓的词和短语之间没有明确的界限。

这可能也就是中国的一些语法学家认为,中文没有词语而只有汉字的原因,并创造了一个术语–“字短语”来代替传统的词汇。董振东就认为:“‘词或字符’的争论源于他们都急于给中国语言一个硬规范的共同基础。遗憾的是,中文不是那么明确的或硬的,它是软的。我们必须认识到其‘柔软度’”。

除构词法的原因之外,人们还因为自身的方言、受教育程度、亚文化等差异因素,对词汇的认识也不同。这些事实都成为制定统一的汉语分词标准的障碍。但是对于计算机系统而言,同一种语言应使用统一的规范来划分词汇,否则,很难想象在多重标准下的词汇系统能够计算出相同的语义结果。

随着 NLP的大规模应用,计算语言学界逐渐统一了汉语词汇的标准。
《信息处理用现代汉语分词规范》关于汉语词的定义给出了如下说明:汉语信息处理使用的、具有确定的语义或语法功能的基本单位

2. 基本原理

中文分词的实现依赖于三大类方法:

(1)基于规则(词典)的分词方法

  • 核心思想:通过预定义的词典匹配文本中的词条,优先匹配最长词。
  • 典型算法
    • 正向最大匹配(FMM):从左到右逐字扫描,优先匹配最长词(如“北京大学”优先于“北京”)。
    • 逆向最大匹配(BMM):从右到左扫描,适用于处理后缀歧义(如“为人民办公益”可能误分为“为人/民办/公益”)。
    • 双向最大匹配:结合FMM和BMM,若结果一致则采纳,否则按最小词数或上下文调整。
  • 特点:速度快、实现简单,但依赖词典质量,无法处理未登录词和新词。

(2)基于统计的分词方法

  • 核心思想:利用大规模语料训练语言模型,通过概率选择最优分词路径。
  • 典型模型
    • N-gram语言模型:计算词序列联合概率,例如“南京市长江大桥”的切分路径通过Bigram或Trigram概率比较。
    • 隐马尔可夫模型(HMM):将分词转化为序列标注问题(BEMS:词首/中/尾/单字),如“北京/大学”标注为“B-E B-E”。
    • 条件随机场(CRF):相比HMM,考虑全局特征,标注更精准。
  • 特点:能处理未登录词和歧义,但需大量标注数据。

(3)基于深度学习的分词方法

  • 核心思想:通过神经网络自动学习上下文特征,端到端输出分词结果。
  • 典型模型
    • BiLSTM-CRF:双向LSTM捕捉上下文,CRF优化标签序列。
    • Transformer:自注意力机制处理长距离依赖,如《Multi-Criteria Chinese Word Segmentation with Transformer》。
    • 预训练模型(如BERT):直接以字符为单位建模,无需显式分词(如“陈敬雷分布式机器学习实战”整体处理)。
  • 特点:准确率高,但依赖算力和数据量,模型复杂度高。

实现工具与案例

  1. 主流工具

    • jieba:基于HMM和前缀词典,支持精确模式、全模式和搜索引擎模式。
      • 原理:构建前缀词典生成DAG(有向无环图),动态规划选择最大概率路径。
      • 示例:“研究生物”可能切分为“研究生/物”(HMM纠正为“研究/生物”)。
    • HanLP:集成词典与统计模型,支持多任务(如词性标注、NER)。
    • THULAC:清华大学开源工具,结合CRF和深度学习。
  2. 代码实现(以jieba为例)

    import jieba
    # 精确模式
    seg_list = jieba.cut("南京市长江大桥", cut_all=False)
    print("/".join(seg_list))  # 南京/市/长江大桥
    # 搜索引擎模式
    seg_search = jieba.cut_for_search("陈敬雷分布式机器学习实战")
    print("/".join(seg_search))  # 陈敬雷/分布式/机器/学习/实战/分布式机器学习/机器学习
    

3. 发展趋势:多数场景无需显式分词

  • 预训练模型的突破
    BERT、GPT等模型直接以字符或子词(如WordPiece)为输入,通过上下文隐式学习词边界和语义组合。例如“机器学习”无需提前切分,模型能自动关联“机”与“器”、“学”与“习”形成整体语义。
  • 实验证据
    ACL 2019论文在语言模型、机器翻译等任务中验证,字符级模型效果优于词级模型。原因包括:
    • 数据稀疏性:词级模型面临低频词和OOV问题(如CTB数据集中约40%的词出现≤4次)。
    • 噪声传递:分词工具误差(如“南京市长江大桥”误切为“南京/市长/江大桥”)会损害模型性能。

无需分词的典型场景

场景原因
预训练语言模型直接处理字符或子词,通过自注意力机制学习长距离依赖和词组合规律。
文本分类/情感分析字符级CNN或Transformer能捕捉局部语义,如“好评”和“差评”无需依赖词边界。
机器翻译字符级输入减少OOV问题,如“Transformer”作为未登录词可通过子词拆分处理。

仍需分词的特定场景

场景原因
依赖词结构的任务如词性标注、句法分析,传统方法需显式分词定义词单位(但部分预训练模型已内化此类能力)。
信息检索(IR)若查询与文档使用相同分词规则,可提升召回率(如“机器学习”切分为“机器/学习”匹配更多结果)。
小数据场景数据量不足时,分词可提供词级特征辅助模型(如“苹果公司”作为整体提升实体识别准确率)。

深度学习模型并非完全不需要分词,但显式分词的场景已大幅减少

未来随着模型对细粒度语义的理解加深,分词的“中间层”角色将进一步弱化,但作为医疗、法律等专业领域知识载体仍具实用价值。

http://www.dtcms.com/wzjs/223267.html

相关文章:

  • limesurvey wordpressaso优化贴吧
  • 用easyui皮肤做漂亮的网站无锡百度正规公司
  • 企业可以做哪些网站nba最新排行榜
  • 如何给网站更换域名企业seo排名费用报价
  • 万云网络网站苏州seo关键词优化方法
  • 怎么更改网站关键词兰州搜索引擎优化
  • 免费推广网站途径有哪些泰安seo公司
  • 建设网站的分析报告武汉百度百科
  • 网站建设报价选兴田德润中国舆情观察网
  • 东莞网站建设推广服务seo标题优化是什么意思
  • 网站开发课程百度客户电话
  • 淘宝客的网站是自己做的吗下载谷歌浏览器并安装
  • 做网站时分类标题和分类描述网站建设策划
  • 做网站需要到什么技术提交网址给百度
  • 沈阳什么行业做网站的最多注册公司流程和费用
  • 张店政府网站建设公司全球搜索
  • 如何在淘宝上做自己的网站关键词排名优化
  • vps正常网站打不开网站推广100种方法
  • 赣州网站建设多少钱巨量算数
  • 手机网站 怎么开发策划营销
  • 做淘宝优惠网站百度关键词检测工具
  • 海口免费自助建站模板网络seo
  • 商务信息网站外贸怎么建立自己的网站
  • 做网站算经商吗超级优化空间
  • 申请网站建设的报告查看浏览过的历史记录百度
  • 广州领域设计网络运营有限公司北京seo公司助力网络营销
  • 淄博建设网站制作网站软件
  • 长沙做门户网站的公司域名注册网站有哪些
  • 福田做网站福田网站建设福田建网站500医疗器械龙头股
  • 网站后台登录地址修改北京网站建设公司优势