当前位置: 首页 > wzjs >正文

手机版网站如何做图片滚动新闻发布最新新闻

手机版网站如何做图片滚动,新闻发布最新新闻,网站租金可以做办公费吗,网站建设外包被骗知识点回顾: PyTorch和cuda的安装 查看显卡信息的命令行命令(cmd中使用) cuda的检查 简单神经网络的流程 数据预处理(归一化、转换成张量) 模型的定义 继承nn.Module类 定义每一个层 定义前向传播流程 定义损失函数和优…

知识点回顾:
PyTorch和cuda的安装
查看显卡信息的命令行命令(cmd中使用)
cuda的检查
简单神经网络的流程
数据预处理(归一化、转换成张量)
模型的定义
继承nn.Module类
定义每一个层
定义前向传播流程
定义损失函数和优化器
定义训练流程
可视化loss过程
预处理补充:

注意事项:

1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。

2. 回归任务中,标签需转为float类型(如torch.float32)。

作业:今日的代码,要做到能够手敲。这已经是最简单最基础的版本了。

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.preprocessing import MinMaxScaler
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as npif torch.cuda.is_available():print("CUDA可用!")# 获取可用的CUDA设备数量device_count = torch.cuda.device_count()print(f"可用的CUDA设备数量: {device_count}")# 获取当前使用的CUDA设备索引current_device = torch.cuda.current_device()print(f"当前使用的CUDA设备索引: {current_device}")# 获取当前CUDA设备的名称device_name = torch.cuda.get_device_name(current_device)print(f"当前CUDA设备的名称: {device_name}")# 获取CUDA版本cuda_version = torch.version.cudaprint(f"CUDA版本: {cuda_version}")
else:print("CUDA不可用。")# 加载4特征,3分类的鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# # 打印下尺寸
# print(X_train.shape)
# print(y_train.shape)
# print(X_test.shape)
# print(y_test.shape)# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放# 转换为PyTorch张量
X_train=torch.FloatTensor(X_train) 
X_test=torch.FloatTensor(X_test) 
y_train=torch.LongTensor(y_train) 
y_test=torch.LongTensor(y_test) # print(X_train.shape)
# print(y_train.shape)
# print(X_test.shape)
# print(y_test.shape)class MLP(nn.Module): # 定义一个多层感知机MLP模型,继承nn.Module类def __init__(self):super(MLP,self).__init__() #调用父类的构造函数self.fc1=nn.Linear(4,10) #输入层到隐藏层,4个特征,10个神经元self.relu=nn.ReLU() #激活函数self.fc2=nn.Linear(10,3) #隐藏层到输出层,10个神经元,3个类别def forward(self,x): #前向传播out=self.fc1(x) #输入层到隐藏层out=self.relu(out) #激活函数out=self.fc2(out) #隐藏层到输出层return out #返回输出层的结果model=MLP() #实例化模型criterion=nn.CrossEntropyLoss() #定义损失函数,交叉熵损失函数,适用于多分类问题optimizer=optim.SGD(model.parameters(),lr=0.01) #定义优化器,随机梯度下降,学习率为0.01num_epochs=20000 #定义训练轮数
losses=[] #定义一个列表,用于存储损失值
for epoch in range(num_epochs):outputs=model.forward(X_train) #前向传播,得到输出层的结果loss=criterion(outputs,y_train) #计算损失值,y_train是真实标签,outputs是模型的预测值losses.append(loss.item()) #记录损失值optimizer.zero_grad() #清空梯度loss.backward() #反向传播,计算梯度optimizer.step() #更新参数if (epoch+1)%1000==0: #每10000轮输出一次损失值print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

@浙大疏锦行

http://www.dtcms.com/wzjs/218014.html

相关文章:

  • 怀化人大网站软文推广方案
  • 个人建网站做站长广州seo公司排名
  • 美容加盟的网站建设石家庄网站建设公司
  • 织梦本地做网站现在推广用什么平台
  • 网站wordpress主题seo是指什么意思
  • 青岛营销型网站建设域名注册费用
  • 企业网站的建设水平直接关系到网络营销的效果疫情最新消息
  • 河南省建设部网站官网快手seo软件下载
  • 简单的网站代码公司网站搭建
  • 河南网站建设详细流程58同城如何发广告
  • 日本 网站 设计 模仿欧美seo网站关键词排名快速
  • WordPress对象储存插件南京seo公司哪家
  • 怎样制作网页且有链接东莞优化怎么做seo
  • 主流网站 技术渠道营销推广方案
  • 做网站的一些费用百度风云榜游戏排行榜
  • 列表网网站建设企业软文怎么写
  • 做网站需要执照嘛今日头条新闻发布
  • 网站后台不更新销售网络平台推广
  • 公司做网站需要服务器吗如何自己创建网址
  • 江苏10大网站建设公司自助建站平台
  • 沈阳网站制作优化长沙seo推广外包
  • 称为seo外包靠谱
  • 做网站是做广告吗如何优化关键词搜索
  • Linux哪个版本做网站好新媒体代运营
  • 比较好的网站建设平台资源平台
  • 淮安集团网站建设搜索引擎优化的目的是对用户友好
  • 微信小程序开发实战课后答案贴吧aso优化贴吧
  • 网站建设程序流程图百度竞价排名魏则西事件分析
  • 传奇私服网站搭建教程网站建设免费
  • 营销型网站建设项目需求表考证培训机构