当前位置: 首页 > wzjs >正文

app商城网站开发软文广告100字

app商城网站开发,软文广告100字,wordpress 数据库空间,光谷中心城建设投资有限公司网站以下是希尔排序的详细解析,包含基础实现、常见变体的完整代码示例,以及各变体的对比表格: 一、希尔排序基础实现 原理 希尔排序是插入排序的改进版本,通过分步缩小增量间隔,将数组分成多个子序列进行插入排序&#…

以下是希尔排序的详细解析,包含基础实现、常见变体的完整代码示例,以及各变体的对比表格:
在这里插入图片描述


一、希尔排序基础实现

原理

希尔排序是插入排序的改进版本,通过分步缩小增量间隔,将数组分成多个子序列进行插入排序,逐步减少元素移动次数。

代码示例
public class ShellSort {void sort(int[] arr) {int n = arr.length;// 初始增量(希尔原始增量:n/2,每次除以2)for (int gap = n / 2; gap > 0; gap /= 2) {// 对每个子序列进行插入排序for (int i = gap; i < n; i++) {int temp = arr[i];int j;// 插入排序,步长为gapfor (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}}
}
复杂度分析
  • 时间复杂度
    • 平均:O(n^(3/2))(希尔原始增量)。
    • 最坏:O(n²)(依赖增量序列)。
    • 最好:O(n log n)
  • 空间复杂度O(1)
  • 稳定性:不稳定(相同值的元素可能因交换顺序改变相对位置)。

二、常见变体及代码示例

1. Hibbard增量序列

改进点:增量序列选择 2^k - 1(如1、3、7、15…),减少子序列间的相关性。
适用场景:平均性能优于原始希尔增量。

public class HibbardShellSort {void sort(int[] arr) {int n = arr.length;// 生成Hibbard增量序列int gap = 1;while (gap < n / 2) {gap = 2 * gap + 1;}while (gap >= 1) {for (int i = gap; i < n; i++) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}gap = (gap - 1) / 2; // 逆序应用增量}}
}
2. Sedgewick增量序列

改进点:增量序列按特定公式生成(如1, 5, 19, 41, 109…),优化时间复杂度。
适用场景:理论时间复杂度更低(接近 O(n^(4/3)))。

public class SedgewickShellSort {void sort(int[] arr) {int n = arr.length;// 生成Sedgewick增量序列List<Integer> gaps = new ArrayList<>();for (int h = 1; h < n; ) {gaps.add(h);if (h <= n / 3) h = 3 * h + 1;else h = 3 * (h / 2) + 1;}// 逆序应用增量for (int i = gaps.size() - 1; i >= 0; i--) {int gap = gaps.get(i);for (int j = gap; j < n; j++) {int temp = arr[j];int k;for (k = j; k >= gap && arr[k - gap] > temp; k -= gap) {arr[k] = arr[k - gap];}arr[k] = temp;}}}
}
3. 斐波那契增量序列

改进点:增量序列基于斐波那契数列(如1、1、2、3、5…),减少子序列相关性。
适用场景:理论上的优化尝试。

public class FibonacciShellSort {void sort(int[] arr) {int n = arr.length;// 生成斐波那契增量序列List<Integer> gaps = new ArrayList<>();int a = 0, b = 1;while (b < n) {gaps.add(b);int temp = a + b;a = b;b = temp;}// 逆序应用增量for (int i = gaps.size() - 1; i >= 0; i--) {int gap = gaps.get(i);for (int j = gap; j < n; j++) {int temp = arr[j];int k;for (k = j; k >= gap && arr[k - gap] > temp; k -= gap) {arr[k] = arr[k - gap];}arr[k] = temp;}}}
}

三、变体对比表格

变体名称增量序列时间复杂度空间复杂度稳定性主要特点适用场景
基础希尔排序(原始增量)n/2, n/4, ..., 1O(n^(3/2))(平均)
O(n²)(最坏)
O(1)不稳定简单易实现,但性能依赖增量选择通用场景,增量选择简单
Hibbard增量序列2^k -1(如1,3,7,15…)O(n^(3/2))(平均)O(1)不稳定减少子序列相关性,性能更优需要平衡性能与实现复杂度的场景
Sedgewick增量序列1,5,19,41,…O(n^(4/3))(理论最优)O(1)不稳定理论时间复杂度最低,适合大数据需要极致性能的场景
斐波那契增量序列斐波那契数列(如1,2,3…)O(n^(3/2))(平均)O(1)不稳定理论上的优化尝试,实际效果需验证研究或特定实验场景

四、关键选择原则

  1. 基础场景:优先使用基础希尔排序(原始增量),因其简单且性能足够。
  2. 性能优化
    • Hibbard增量:适合需要比原始增量更好的平均性能,且实现复杂度较低。
    • Sedgewick增量:适用于大数据场景,理论时间复杂度最低。
  3. 增量序列选择
    • 理论最优:Sedgewick增量。
    • 实现简单:Hibbard增量。
  4. 稳定性需求:所有变体均不稳定,若需稳定排序需选择其他算法(如归并排序)。
  5. 实验场景:斐波那契增量可用于探索不同增量序列的效果,但实际应用较少。

通过选择合适的增量序列,可在特定场景下显著提升希尔排序的效率。例如,Sedgewick增量在理论上的时间复杂度最低,适合大数据排序;而Hibbard增量则在实现复杂度与性能之间取得平衡。

http://www.dtcms.com/wzjs/203414.html

相关文章:

  • 建立网站的流程是什么市场营销案例
  • 江西网站建设费用阿里云域名注册流程
  • 网站开发详细报价百度校招
  • 公司做网站域名归谁推广公司有哪些
  • 怎么自己做网站加盟湖南长沙seo
  • 常州个人网站建设佛山网站建设正规公司
  • 汕头网站推广制作怎么做优化服务公司
  • 做网站推广我们是专业的设计公司网站模板
  • 网站优化软件排名软文技巧
  • vs和sql怎么做网站优质的seo网站排名优化软件
  • 做网站购买空间多少钱厦门网站建设公司
  • php js做网站旅游景点推广软文
  • bootstrap模板网站百度的网址是什么呢
  • 天津市城乡建设局网站如何优化关键词的方法
  • 如何做网站推广方式站长之家网站排行榜
  • 成都网站建设托管淄博网络推广公司哪家好
  • 济南便宜网站设计网站404页面怎么做
  • wordpress in_category长沙网站优化方案
  • 山东临朐门户网站微信营销软件
  • 怎做网站转appseo刷网站
  • 浙江网站建设正规公司网络营销的六大特征
  • 妇科医院网站建设怎么做无锡百度推广公司哪家好
  • 道滘仿做网站上海sem
  • 科网站建设网站入口
  • 网站优化关键词什么软件可以发布广告信息
  • 凡科网站建设怎么样seo关键词优化公司
  • 网站建设需要用到的软件开发seo品牌推广方法
  • 网站开发ide个人博客登录首页
  • 做美剧网站侵权自媒体运营
  • 好用的外贸网站建设网站的网站首页