当前位置: 首页 > wzjs >正文

谷歌云 阿里云 做网站农产品网络营销推广方案

谷歌云 阿里云 做网站,农产品网络营销推广方案,中国艺术设计联盟,网站外包后呗百度降权1. 定义 ϕ ( n ) \phi(n) ϕ(n)在数论中代表欧拉函数, 它的值为小于等于 n n n且与 n n n互质的正整数的个数。 2. 性质 若 p p p为质数,则 ϕ ( p ) p − 1 \phi(p) p-1 ϕ(p)p−1; 除了自身以外全都互质。 若 p p p为质数,则 ϕ ( p…

1. 定义

ϕ ( n ) \phi(n) ϕ(n)在数论中代表欧拉函数,

它的值为小于等于 n n n且与 n n n互质的正整数的个数。

2. 性质

  • p p p为质数,则 ϕ ( p ) = p − 1 \phi(p) =p-1 ϕ(p)=p1;

除了自身以外全都互质。

  • p p p为质数,则 ϕ ( p k ) = p k − p k − 1 \phi(p^k)=p^k-p^{k-1} ϕ(pk)=pkpk1

p k p^{k} pk不互质的一定是 p p p的倍数,即 p , 2 p , 3 p , ⋯ , p k − 1 p p,2p,3p,\cdots,p^{k-1}p p,2p,3p,,pk1p, 一共 p k − 1 p^{k-1} pk1个数,因此剩下的就是与 p k p^{k} pk互质的,因此 ϕ ( p k ) = p k − p k − 1 \phi(p^{k})=p^{k}-p^{k-1} ϕ(pk)=pkpk1

  • 欧拉函数定义式: ϕ ( n ) = n Π i = 1 m ( 1 − 1 p i ) \phi(n)=n\Pi_{i=1}^{m}(1-\frac{1}{p_i}) ϕ(n)=nΠi=1m(1pi1)

这条性质可以由算术基本定理和容斥原理证明,具体证明可以看欧拉函数积性证明。

  • 欧拉函数积性: gcd ⁡ ( a , b ) = 1 ⇒ ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \gcd(a,b)=1 \Rightarrow \phi(ab)=\phi(a)\phi(b) gcd(a,b)=1ϕ(ab)=ϕ(a)ϕ(b)

同样可以看上面提到的文章中的证明。

  • a a a为质数且 a ∣ b a \mid b ab,则 ϕ ( a b ) = a ϕ ( b ) \phi(ab)=a \phi(b) ϕ(ab)=aϕ(b)

我们假设 b = a k m b=a^{k}m b=akm, 那么 ϕ ( b ) = ϕ ( a k m ) \phi(b)=\phi(a^km) ϕ(b)=ϕ(akm);

显然 gcd ⁡ ( a k , m ) = 1 \gcd(a^{k},m)=1 gcd(ak,m)=1,那么根据积性性质可得 ϕ ( b ) = ϕ ( a k m ) = ϕ ( a k ) ϕ ( m ) \phi(b)=\phi(a^{k}m)=\phi(a^{k})\phi(m) ϕ(b)=ϕ(akm)=ϕ(ak)ϕ(m)

再根据上面的性质 ϕ ( a k ) = a k − a k − 1 \phi(a^{k})=a^{k}-a^{k-1} ϕ(ak)=akak1

同理 ϕ ( a b ) = ϕ ( a k + 1 m ) = ϕ ( a k + 1 ) ϕ ( m ) = ( a k + 1 − a k ) ϕ ( m ) \phi(ab)=\phi(a^{k+1}m)=\phi(a^{k+1})\phi(m)=(a^{k+1}-a^k) \phi(m) ϕ(ab)=ϕ(ak+1m)=ϕ(ak+1)ϕ(m)=(ak+1ak)ϕ(m)

a ϕ ( b ) = a ( a k − a k − 1 ) ϕ ( m ) = ( a k + 1 − a k ) ϕ ( m ) a\phi(b)=a(a^k-a^{k-1})\phi(m)=(a^{k+1}-a^k)\phi(m) aϕ(b)=a(akak1)ϕ(m)=(ak+1ak)ϕ(m)

因此 a ϕ ( b ) = ϕ ( a b ) a\phi(b)=\phi(ab) aϕ(b)=ϕ(ab)

  • 因数的欧拉函数和等于 n n n: ∑ d ∣ n ϕ ( n d ) = ∑ d ∣ n ϕ ( d ) = n \sum_{d | n} \phi(\frac{n}{d}) = \sum_{d | n} \phi(d)=n dnϕ(dn)=dnϕ(d)=n

这个性质的证明不太好想,抄下来算了。

我们令全集 S n : = { 1 , 2 , ⋯ , n } S_n := \{ 1,2,\cdots,n\} Sn:={1,2,,n}

我们可以对这个集合根据与 n n n的最大公因数作划分

定义 A d : = { x ∣ gcd ⁡ ( x , n ) = d , x ∈ S n } A_d := \{ x| \gcd(x,n)=d, x \in S_n\} Ad:={xgcd(x,n)=d,xSn}

由于 gcd ⁡ ( x , n ) = d \gcd(x,n)=d gcd(x,n)=d,我们同时除一个 d d d得到 gcd ⁡ ( x d , n d ) = 1 \gcd(\frac{x}{d}, \frac{n}{d})=1 gcd(dx,dn)=1

因此 ∣ A d ∣ = ϕ ( n d ) |A_d|=\phi(\frac{n}{d}) Ad=ϕ(dn), 这一步是关键就是构建互质转换为欧拉函数。

将所有的最大公因数划分全部加起来

∑ d ∣ n ∣ A d ∣ = ∑ d ∣ n ϕ ( n d ) = ∣ S n ∣ = n \sum_{d|n} |A_d|=\sum_{d|n} \phi(\frac{n}{d})=|S_n|=n dnAd=dnϕ(dn)=Sn=n
根据因子的对称性,显然
∑ d ∣ n ϕ ( n d ) = ∑ d ∣ n ϕ ( d ) = n \sum_{d|n} \phi(\frac{n}{d})=\sum_{d|n}\phi(d) =n dnϕ(dn)=dnϕ(d)=n

Q . E . D Q.E.D Q.E.D

参考

豆包ai

http://www.dtcms.com/wzjs/203335.html

相关文章:

  • 做app推广上哪些网站吗移动网站优化排名
  • 合肥网站制作培训关键词优化报价怎么样
  • 茂名seo网站推广广告宣传费用一般多少
  • 上海杨浦网站建设企业网络营销策划方案
  • 信宜市建设局网站的搜索引擎优化
  • 图书翻页的动画 做网站启动用北京seo网站管理
  • 化妆品网站建设策略关键词推广优化排名品牌
  • 长垣建设银行网站什么平台打广告比较好免费的
  • 网站是如何建立的电商网课
  • 深圳做棋牌网站建设哪家技术好数据平台
  • 网站建设及系统开发培训学校
  • 电子商务网站建设与管理期末武汉网络推广
  • 网站建设在哪个软件下做公司网站建站要多少钱
  • 如何进行新产品的推广象山seo外包服务优化
  • 如何登陆工商局网站做变更网站域名查询系统
  • 建设银行网站打不开怎么办理百度seo优化哪家好
  • 网站建设熊掌号里属于什么领域互动营销策略
  • 山东省住房和城乡建设厅焊工证北京优化互联网公司
  • 成都交投成高建设公司网站一键seo提交收录
  • 网站推广公司自己做一个网站需要什么
  • 陕西中洋建设有限公司网站郑州网络公司排名
  • 网站规划与设计教案seo一般包括哪些内容
  • 汕头市政府门户网站官网唯尚广告联盟app下载
  • 深圳坪山区地图重庆百度seo整站优化
  • hbuilder网页制作模板铁力seo
  • 行业平台网站建设网址大全
  • 哈尔滨企业建站服务商ks数据分析神器
  • 济南商城网站建设公司2021年网络营销考试题及答案
  • 如何用自己的电脑做网站空间泽成seo网站排名
  • 做网站开发需要学什么软件seo结算系统