当前位置: 首页 > wzjs >正文

济宁做网站比较好的公司有哪些新产品推广方案范文

济宁做网站比较好的公司有哪些,新产品推广方案范文,怎么让客户做网站,做网站如何规避法律风险分布式GPU上计算长向量模的方法 当向量分布在多个GPU卡上时,计算向量模(2-范数)需要以下步骤: 在每个GPU上计算本地数据的平方和跨GPU通信汇总所有平方和在根GPU上计算总和的平方根 实现方法 下面是一个完整的CUDA示例代码,使用NCCL进行多…

分布式GPU上计算长向量模的方法

当向量分布在多个GPU卡上时,计算向量模(2-范数)需要以下步骤:

  1. 在每个GPU上计算本地数据的平方和
  2. 跨GPU通信汇总所有平方和
  3. 在根GPU上计算总和的平方根

实现方法

下面是一个完整的CUDA示例代码,使用NCCL进行多GPU通信:

#include <iostream>
#include <cmath>
#include <cuda_runtime.h>
#include <nccl.h>#define CHECK_CUDA(call) { \cudaError_t err = call; \if (err != cudaSuccess) { \std::cerr << "CUDA error at " << __FILE__ << ":" << __LINE__ << ": " \<< cudaGetErrorString(err) << std::endl; \exit(EXIT_FAILURE); \} \
}#define CHECK_NCCL(call) { \ncclResult_t res = call; \if (res != ncclSuccess) { \std::cerr << "NCCL error at " << __FILE__ << ":" << __LINE__ << ": " \<< ncclGetErrorString(res) << std::endl; \exit(EXIT_FAILURE); \} \
}// CUDA核函数:计算局部平方和
__global__ void compute_local_square_sum(const float* vec, float* partial_sum, size_t n) {extern __shared__ float shared_mem[];unsigned int tid = threadIdx.x;unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;float sum = 0.0f;if (i < n) {float val = vec[i];sum = val * val;}// 归约到共享内存shared_mem[tid] = sum;__syncthreads();// 块内归约for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {if (tid < s) {shared_mem[tid] += shared_mem[tid + s];}__syncthreads();}// 第一个线程写入结果if (tid == 0) {partial_sum[blockIdx.x] = shared_mem[0];}
}// 计算向量模
float distributed_vector_norm(int ngpus, size_t total_elements, size_t local_elements, const float* local_vec, cudaStream_t stream, ncclComm_t comm) {// 1. 每个GPU计算本地平方和const int block_size = 256;const int grid_size = (local_elements + block_size - 1) / block_size;float* d_partial_sums;CHECK_CUDA(cudaMalloc(&d_partial_sums, grid_size * sizeof(float)));// 调用核函数计算局部平方和compute_local_square_sum<<<grid_size, block_size, block_size * sizeof(float), stream>>>(local_vec, d_partial_sums, local_elements);// 2. 在设备上完成最终归约float* d_local_sum;CHECK_CUDA(cudaMalloc(&d_local_sum, sizeof(float)));// 使用CUDA的归约函数完成设备上的最终归约void* d_temp_storage = nullptr;size_t temp_storage_bytes = 0;cub::DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_partial_sums, d_local_sum, grid_size, stream);CHECK_CUDA(cudaMalloc(&d_temp_storage, temp_storage_bytes));cub::DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_partial_sums, d_local_sum, grid_size, stream);// 3. 跨GPU通信汇总所有平方和float* d_global_sum;CHECK_CUDA(cudaMalloc(&d_global_sum, sizeof(float)));// 使用NCCL进行all reduce操作CHECK_NCCL(ncclAllReduce((const void*)d_local_sum, (void*)d_global_sum, 1, ncclFloat, ncclSum, comm, stream));// 4. 计算平方根(只在root GPU上获取结果)float global_sum = 0.0f;int root = 0;int rank;CHECK_NCCL(ncclCommUserRank(comm, &rank));if (rank == root) {CHECK_CUDA(cudaMemcpyAsync(&global_sum, d_global_sum, sizeof(float), cudaMemcpyDeviceToHost, stream));CHECK_CUDA(cudaStreamSynchronize(stream));}// 清理CHECK_CUDA(cudaFree(d_temp_storage));CHECK_CUDA(cudaFree(d_partial_sums));CHECK_CUDA(cudaFree(d_local_sum));CHECK_CUDA(cudaFree(d_global_sum));return (rank == root) ? sqrtf(global_sum) : 0.0f;
}int main(int argc, char* argv[]) {// 初始化int ngpus;CHECK_CUDA(cudaGetDeviceCount(&ngpus));// 初始化NCCLncclComm_t comm;ncclUniqueId id;if (rank == 0) ncclGetUniqueId(&id);MPI_Bcast(&id, sizeof(id), MPI_BYTE, 0, MPI_COMM_WORLD);CHECK_NCCL(ncclCommInitRank(&comm, ngpus, id, rank));// 假设总向量大小为1亿元素size_t total_elements = 100000000;size_t local_elements = total_elements / ngpus;// 分配和初始化本地向量float* d_local_vec;CHECK_CUDA(cudaMalloc(&d_local_vec, local_elements * sizeof(float)));// 初始化向量数据(这里简单设置为全1,实际应用中应填充真实数据)float init_val = 1.0f;CHECK_CUDA(cudaMemset(d_local_vec, init_val, local_elements * sizeof(float)));// 创建CUDA流cudaStream_t stream;CHECK_CUDA(cudaStreamCreate(&stream));// 计算向量模float norm = distributed_vector_norm(ngpus, total_elements, local_elements, d_local_vec, stream, comm);int rank;CHECK_NCCL(ncclCommUserRank(comm, &rank));if (rank == 0) {std::cout << "Vector norm: " << norm << std::endl;std::cout << "Expected norm: " << sqrtf(total_elements) << std::endl;}// 清理CHECK_CUDA(cudaFree(d_local_vec));CHECK_CUDA(cudaStreamDestroy(stream));CHECK_NCCL(ncclCommDestroy(comm));return 0;
}

关键点说明

  1. 数据分布:向量被均匀分布在多个GPU上,每个GPU处理一部分数据。

  2. 本地计算

    • 使用CUDA核函数计算本地数据的平方和
    • 使用块内归约优化性能
    • 使用CUB库进行设备端最终归约
  3. 跨GPU通信

    • 使用NCCL进行all-reduce操作,汇总所有GPU的平方和
    • NCCL针对多GPU通信进行了优化
  4. 结果计算

    • 只在根GPU上计算最终结果的平方根
    • 其他GPU可以忽略结果或用于后续计算

编译说明

编译此代码需要:

  • CUDA工具包
  • NCCL库
  • CUB头文件(通常包含在CUDA工具包中)

编译命令示例:

nvcc -o distributed_norm distributed_norm.cu -lnccl

性能优化建议

  1. 对于非常大的向量,可以考虑使用更高效的内存访问模式
  2. 根据GPU架构调整块大小和网格大小
  3. 使用CUDA图来捕获整个计算流程,减少启动开销
  4. 考虑使用FP16或TF32计算来提升吞吐量(如果精度允许)

这种方法可以高效地计算分布在多个GPU上的大型向量的模,适用于大规模科学计算和机器学习应用。

http://www.dtcms.com/wzjs/197892.html

相关文章:

  • 网站推广效益怎么分析网站推广服务
  • 福建建设建设厅官方网站打开网址跳转到国外网站
  • 深圳营销型网站建设网络营销 长沙
  • 注册安全工程师官网seo快排技术教程
  • 南阳做那个网站好全国新增确诊病例
  • 百色市右江区了建设局网站百度关键词排名优化工具
  • 网站开发开源代码设计网站官网
  • 泊头市有做网站的吗中国新闻最新消息今天
  • 自己怎么做商城网站吗关键词排名的工具
  • 做今网站windows优化大师是病毒吗
  • 网站代备案网络营销顾问工作内容
  • 安徽餐饮网站建设谷歌官网下载app
  • 做网站百度上海网络推广团队
  • 个人网站建设心得体会网页模板网站
  • cc域名网站快速排名新
  • 搜索引擎提交网站网络营销的理解
  • 企业网站建设公司爱站工具包官网
  • 毕业设计 做网站百度推广助手app下载
  • 做调查问卷网站关键词如何确定
  • wordpress 端口沈阳seo排名收费
  • 国际新闻今天最新网站怎样优化文章关键词
  • 怎么做正规网站鹤壁seo推广
  • 网站的seo优化怎么做嘉兴百度seo
  • 湖南微信网站公司电话号码网上怎么免费推广
  • 最近的十大新闻seo收费标准多少
  • 上海个人医疗网站备案百度一下你就知道啦
  • 网站系统建设百度智能云
  • ifm网站做啥的信息如何优化上百度首页公司
  • 有做翻译英文网站免费十八种禁用网站
  • 比较好的做简历的网站高级搜索