当前位置: 首页 > wzjs >正文

日照网站建设doingseo成都网站建设技术外包

日照网站建设doingseo,成都网站建设技术外包,做眼镜网站草图有什么原则,香港网站百度收录不多一、分布检验 1 四种常用函数 dnorm: density norm,表示正太分布的概率密度(f),即单点取值的概率。如果生成序列点回复即得到正太线pnorm:pribability,表示正态分布的累积分布,最终…

一、分布检验

1 四种常用函数

  • dnorm: density norm,表示正太分布的概率密度(f),即单点取值的概率。如果生成序列点回复即得到正太线
  • pnorm:pribability,表示正态分布的累积分布,最终生成CDF线
  • qnorm:与pnorm相反,pnorm根据数值求累积分布(0-1),qnorm根据累积分布求数值
  • rnorm:生成一组正太随机数。

2 各种分布与检验

2.1 对数分布和检验

library(MASS) # 1.1 log-noraml distribution
## 拟合lognormal模型
lognormal_distr <- fitdistr(as.array(data[,1]),"lognormal")
## 依次输出模型的系数、方差、最大似然值
lognormal_distr$estimate  
lognormal_distr$sd
lognormal_distr$loglik
## 图形分布 + 拟合分布
par(pin=c(5,5))
h_lognormal <-hist(as.array(data[,1]),ylim = c(0,230), main = "Histogram of lognormal",xlab='data')   # 绘制源数据的直方图
xfit <-seq(min(data[,1]), max(data[,1]), by=(max(data[,1])-min(data[,1]))/1000)
yfit <-dlnorm(xfit, meanlog = lognormal_distr$estimate[1], sdlog = lognormal_distr$estimate[2])
yfit <- yfit*diff(h_lognormal$mids[1:2])*length(xfit)
lines(xfit, yfit, col="blue", lwd=2)# K-S test
## 没有直接检验对数正态分布的函数,需要转化后用对数分布检验
lognormal <- c(data[,1])
lognormal_to_normal <- log(lognormal)
## 进行K-S test 并输出结果
lognormal_ks_test <- ks.test(lognormal_to_normal, "pnorm")
lognormal_ks_test# A-D test
library(fBasics)
lognormal_ad_test <- adTest(lognormal_to_normal)
lognormal_ad_test
# Q-Q图
## 自己实现QQ图
t <- (rank(lognormal_to_normal) -0.5)/length(lognormal_to_normal)
q <- qnorm(t)
plot(q, lognormal_to_normal,main = "Lognormal Q-Q plot",xlab = "Theoretical Quantiles",ylab = "Sample Quantiles")
abline(mean(lognormal_to_normal), sd(lognormal_to_normal), col=2, lwd=3)

2.2 gamma分布

# 1.2 gamma distribution
## 拟合gamma模型
gamma_distr <- fitdistr(as.array(data[,1]),"gamma")
## 依次输出模型的系数、方差、最大似然值
gamma_distr$estimate  
gamma_distr$sd
gamma_distr$loglik
## 图形分布 + 拟合分布
par(pin=c(5,5))
h_gamma <-hist(as.array(data[,1]),ylim = c(0,230),main = "Histogram of Gamma",xlab='data')   # 绘制源数据的直方图
xfit <-seq(min(data[,1]), max(data[,1]), by=(max(data[,1])-min(data[,1]))/1000)
yfit <-dgamma(xfit, shape = gamma_distr$estimate[1], rate = gamma_distr$estimate[2])
yfit <- yfit*diff(h_gamma$mids[1:2])*length(xfit)
lines(xfit, yfit, col="blue", lwd=2)# K-S test
## 没有直接检验对数正态分布的函数,需要转化后用对数分布检验
gamma_ks_test <- ks.test(as.array(data[,1]), "gamma")
gamma_ks_test
## 进行K-S test 并输出结果
gamma_ad_test <- adTest(as.array(data[,1]), "pnorm")
gamma_ad_test# Q-Q图 只能使用自己的QQ图画法
## 自己实现QQ图
gamma_data <- as.array(data[,1])
t <- (rank(gamma_data) -0.5)/length(gamma_data)
q <- qgamma(t,shape = gamma_distr$estimate[1], rate = gamma_distr$estimate[2])
plot(q, gamma_data,main = "Gamma Q-Q plot",xlab = "Theoretical Quantiles",ylab = "Sample Quantiles")
abline(0, 1, col=2, lwd=3)

2.3 帕累托分布

# 1.3 pareto distribution
library(actuar)
library(fitdistrplus)
pareto_data <- as.vector(as.array(data[,1]))
## 拟合pareto模型, method='mle'需要指定
pareto_distr <- fitdist(pareto_data,"pareto",method = 'mle', start=list(shape=0.1, scale=0.1))
## 依次输出模型的系数、方差、最大似然值
pareto_distr$estimate
pareto_distr$sd
pareto_distr$loglik
## 图形分布 + 拟合分布
par(pin=c(5,5))
h_pareto <-hist(pareto_data,ylim = c(0,230),main = "Histogram of Pareto",xlab='data')   # 绘制源数据的直方图
xfit <-seq(min(data[,1]), max(data[,1]), by=(max(data[,1])-min(data[,1]))/1000)
yfit <-dpareto(xfit, shape = pareto_distr$estimate[1], scale = pareto_distr$estimate[2])
yfit <- yfit*diff(h_pareto$mids[1:2])*length(xfit)
lines(xfit, yfit, col="blue", lwd=2)# K-S test
## 没有直接检验对数正态分布的函数,需要转化后用对数分布检验
t <- (rank(pareto_data) -0.5)/length(pareto_data)
q <- qweibull(t, shape = pareto_distr$estimate[1], scale = pareto_distr$estimate[2])
pareto_ks_test <- ks.test(as.array(data[,1]), q)
pareto_ks_test
# A-D test
pareto_ad_test <- adTest(as.array(data[,1]), "pnorm")
pareto_ad_test# Q-Q图 只能使用自己的QQ图画法
## 自己实现QQ图
plot(q, pareto_data,main = "Pareto Q-Q plot",xlab = "Theoretical Quantiles",ylab = "Sample Quantiles")
abline(0, 1, col=2, lwd=3)

2.4 weibull分布

## 拟合weibull模型
weibull_distr <- fitdistr(as.array(data[,1]),"weibull")
## 依次输出模型的系数、方差、最大似然值
weibull_distr$estimate  
weibull_distr$sd
weibull_distr$loglik
## 图形分布 + 拟合分布
par(pin=c(5,5))
weibull_data <- as.array(data[,1])
h_weibull <-hist(weibull_data,ylim = c(0,230),main = "Histogram of Weibull",xlab='data')   # 绘制源数据的直方图
xfit <-seq(min(data[,1]), max(data[,1]), by=(max(data[,1])-min(data[,1]))/1000)
yfit <-dweibull(xfit, shape = weibull_distr$estimate[1], scale = weibull_distr$estimate[2])
yfit <- yfit*diff(h_weibull$mids[1:2])*length(xfit)
lines(xfit, yfit, col="blue", lwd=2)# K-S test
## 没有直接检验对数正态分布的函数,需要转化后用对数分布检验
t <- (rank(weibull_data) -0.5)/length(weibull_data)
q <- qweibull(t, shape = weibull_distr$estimate[1], scale = weibull_distr$estimate[2])
weibull_ks_test <- ks.test(as.array(data[,1]), q)
gamma_ks_test
# A-D test
weibull_ad_test <- adTest(as.array(data[,1]), "pnorm")
weibull_ad_test# Q-Q图 只能使用自己的QQ图画法
## 自己实现QQ图
plot(q, weibull_data,main = "Weibull Q-Q plot",xlab = "Theoretical Quantiles",ylab = "Sample Quantiles")
abline(0, 1, col=2, lwd=3)

二、方差分析

1 方差分析

1.1 单因素分析

attach(linseed) 
table(Plot)  
result_mean <-aggregate(Yield,by = list(Plot),FUN= mean)
result_sd <-  aggregate(Yield,by = list(Plot),FUN= sd)
fit<-aov(Yield~Plot) 
summary(fit)
TukeyHSD(fit) 
detach(linseed)

1.2 双因素方差分析


attach(wafer)      # 锁定数据集
table(Furnace, Wafer_Type)    # 交叉查看两个因素
result_mean <- aggregate(Thickness , by = list(Furnace, Wafer_Type) , FUN = mean)    # 交叉均值
result_df <- aggregate(Thickness  by = list(Furnace, Wafer_Type) , FUN = sd)        # 交叉方差
fit <- aov(Thickness ~ Furnace * Wafer.Type)    # 双因素方差分析
summary(fit)   # 输入结论
TukeyHSD(fit)    # 对任意两组输出Tukey honest significant differences
detach(wafer)  # 解锁数据集

2 列联表分析

  1. 双向无序列联表:行和列均只有两个且无序,使用Pearson卡方检验、Fisher精确概率
  2. 单项有序的列联表:常见的情况是结果变量有序,而原因变量无序。用Mann–Whitney U 检验、Kruskal-Wallis H检验
  3. 行列有序且属性相同:比如两列但阴阳。行列变量独立: Kappa一致性检验-即交叉表。配对行列表-McNemar检验、Bowker检验。

2.1 Pearson卡方检验

df <- tibble(count = c(56,283,55,360), Gender = c("Male", "Male", "Female", "Female"), Response = c("Mentioned", "Not Mentioned", "Mentioned","Not Mentioned"))
tbl <- xtabs(count~Response+Gender, df)   # 生成一个列联表
chisq.test(tbl) # 结果结合皮尔逊系数检验即可

2.2 Kruskal-Wallis H

df<-tibble(Grade = rep(c("A", "B", "C", "D-F"),3), count = c(8,14,15,3,15,19,4,1,13,15,7,4), major = c(rep("Psychology",4), rep("Biology",4), rep("Other",4)))xtabs(count~Grade+major, df)%>%
kable("html",table.attr = "style='width:50%;'",align = "c")%>%kable_styling(position = "center")# 这里专业是无序的,成绩是有序的,且分组数大于2,使用Kruskal-Wallis H
df$major_and_grade <- paste(df$Grade,df$major,sep="~")
kruskal.test(count~major_and_grade,data=df)

三、相关性分析

1 皮尔森相关系数

pearson_test <- cor.test(as.array(tem_data$age), as.array(tem_data$confidence),  method = "pearson", use = "complete.obs")

http://www.dtcms.com/wzjs/196474.html

相关文章:

  • 海南营销网站建设网站备案查询官网
  • 在网站做专题seo项目经理
  • 个人网站logo生成南宁网站运营优化平台
  • php开发微信小程序seo网站介绍
  • 青岛做网站多少钱windows优化大师是什么
  • 什么是网络广告策划seo课程培训机构
  • 如何自己创建论坛网站网站建设哪个公司好
  • 现在网站建设的技术百度站长收录提交入口
  • 杭州建设信息网莱芜seo
  • 贵阳网站开发zu97跨境电商哪个平台比较好
  • 半岛建设公司网站什么是百度权重
  • wordpress留言板模板下载seo型网站
  • 做自媒体好还是网站好百度保障中心人工电话
  • web个人网页设计宁波seo优化
  • 兰州搜索引擎推广抖音搜索优化
  • 提高网站规范化建设推广公众号
  • 佛山企业设计网站建设网络推广主要是做什么工作
  • 怎么查网站的关键词排名58同城如何发广告
  • 有没有做ppt很厉害的网站网络营销工具平台
  • 新网站怎么做友情链接seo公司推广
  • 网站建设互联网排名用模板快速建站
  • 聊城企业做网站seo培训学院官网
  • 商务网站的分类潍坊seo建站
  • 企业建站1年佛山疫情最新情况
  • 安徽省城乡建设厅网站西安百度推广开户
  • wordpress首页html在哪里修改武汉seo优
  • 网站翻页模板网站推广seo招聘
  • 做视频网站需要哪些技术怎么学做电商然后自己创业
  • 清爽css网站框架做app推广去哪找商家
  • 站长工具 忘忧草免费注册网站